Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):o787. doi: 10.1107/S1600536809008770

Hydroxonium 1-ammonio­ethane-1,1-diyl­diphospho­nate

Ming Li a,*, Wen Wen a, Wuzu Ha a, Liang Chang a
PMCID: PMC2968973  PMID: 21582512

Abstract

The title complex, H3O+·NH3C(CH3)(PO3H)2 , contains a hydroxonium ion and an NH3C(CH3)(PO3H)2 anion. The three H atoms of H3O+ form a pseudo-tetra­hedron by being distributed over four positions with occupation factors of 0.75. Multiple N—H⋯O and O—H⋯O hydrogen bonds in the crystal structure form an intricate three-dimensional supra­molecular network.

Related literature

For the structures of organophospho­nates, see: Clearfield (2002); Finn et al. (2003). For similar bis­phospho­nates, see: Fernández et al. (2003); For complexes with 1-amino­ethyl­idene-1,1-diphospho­nic acid, see: Yin et al. (2005); Ding et al. (2006); Li et al. (2008). For the synthesis, see: Chai et al. (1980).graphic file with name e-65-0o787-scheme1.jpg

Experimental

Crystal data

  • H3O+·C2H8N2O6P2

  • M r = 223.06

  • Monoclinic, Inline graphic

  • a = 7.3372 (6) Å

  • b = 10.6553 (8) Å

  • c = 10.6128 (8) Å

  • β = 97.705 (1)°

  • V = 822.22 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.36 × 0.27 × 0.18 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.831, T max = 0.910

  • 5340 measured reflections

  • 1972 independent reflections

  • 1837 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.097

  • S = 1.10

  • 1972 reflections

  • 136 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008770/rn2053sup1.cif

e-65-0o787-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008770/rn2053Isup2.hkl

e-65-0o787-Isup2.hkl (97KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2i 0.89 1.98 2.809 (2) 155
N1—H1A⋯O5i 0.89 1.90 2.713 (2) 151
N1—H1B⋯O3ii 0.89 2.01 2.824 (2) 152
O4—H3⋯O3ii 0.73 (4) 1.86 (4) 2.591 (2) 176 (4)
O1—H4⋯O6iii 0.71 (3) 1.84 (3) 2.550 (2) 172 (4)
O1W—H5⋯O5iv 0.893 (10) 1.954 (15) 2.804 (2) 159 (3)
O1W—H8⋯O1v 0.888 (10) 2.64 (4) 3.061 (2) 110 (3)
O1W—H8⋯O3vi 0.888 (10) 2.27 (2) 3.041 (2) 145 (3)
O1W—H6⋯O2vii 0.896 (10) 1.935 (11) 2.828 (2) 175 (3)
O1W—H7⋯O6iii 0.900 (10) 1.920 (11) 2.815 (2) 173 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported financially by the Foundation of Education Department of Hubei Province (No. Q20081705).

supplementary crystallographic information

Comment

Organophosphonic acids and their compounds have attracted tremendous interest. A series of phosphonate hybrid materials have been prepared and show potential applications in catalysts, sensors, sorbents, magnetic and luminescent materials. Such materials also illustrate a variety of structures from one-dimensional chains, two-dimensional layers to three-dimensional porous frameworks. (Finn et al., 2003). Introduction of some functional groups to phosphonic acids, such as crown ether, –COOH, –OH, –NR2 or mixed groups will modify their complexing ability and construct a great number of novel phosphonates (Clearfield, 2002). Compared with other phosphonic acids, 1-aminoethylidene-1,1-diphosphonic acid (AEDPH4) is easier to synthesize. However, little attention has been paid to the structural study of metal-AEDP compounds (Yin et al., 2005; Ding et al., 2006). In our recent paper, it is found that AEDPH4 is inclined to transfer one proton to the amino group, which is in agreement with Fernández's results on similar bisphosphonates. (Li et al., 2008; Fernández et al., 2003). Deprotonation of it will result in predictable hydrogen aggregates from stronger P—O—H···O—P to weaker C—H···O hydrogen bonds. Herein, we report its structure, (I).

The asymmetric unit of (I)is built up from one deprotonated AEDPH3 anion and a disordered H3O+ cation, which are linked through four types of Ow-H···O hydrogen bonds (Fig. 1, Table 1). Two of the four protons of phosphonates are used in protonation, one for the amino group, the other for the H3O+ cation. The combination of different hydrogen bond interactions, N-H···O and O-H···O results in the formation of an intricate three dimensional supramolecular network (Fig.2, Table 1).

Experimental

The AEDPH4 was synthesized according to the US Patent 4239695 (Chai et al., 1980). It was crystallized directly from the AEDPH4 aqueous solution. When the mixture was heated for 24h, colorless crystals were obtained.

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (C), N—H = 0.89Å with Uiso(H) = 1.5Ueq(C,N). The H atoms of hydroxyl were located in difference Fourier maps and included in the subsequent refinement.

The three hydrogen atoms of the H3O+ cation are statistically distributed over four positions with occupation factor of 0.75, building a pseudo tetrahedron.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Partial packing view of compound ( I ), showing the formation of the three dimensional network built from hydrogen bonds. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.

Crystal data

H3O+·C2H8N2O6P2 F(000) = 464
Mr = 223.06 Dx = 1.802 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3640 reflections
a = 7.3372 (6) Å θ = 2.7–29.8°
b = 10.6553 (8) Å µ = 0.53 mm1
c = 10.6128 (8) Å T = 293 K
β = 97.705 (1)° Plate, colorless
V = 822.22 (11) Å3 0.36 × 0.27 × 0.18 mm
Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer 1837 reflections with I > 2σ(I)
graphite Rint = 0.015
φ and ω scans θmax = 28.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −9→9
Tmin = 0.831, Tmax = 0.910 k = −9→14
5340 measured reflections l = −13→11
1972 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8715P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
1972 reflections Δρmax = 0.40 e Å3
136 parameters Δρmin = −0.61 e Å3
4 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.9948 (2) 0.56114 (16) 0.24265 (16) 0.0131 (3)
C2 0.9672 (3) 0.62357 (19) 0.36861 (18) 0.0209 (4)
H2A 1.0741 0.6722 0.3993 0.031*
H2B 0.9488 0.5602 0.4299 0.031*
H2C 0.8615 0.6774 0.3556 0.031*
N1 1.0165 (2) 0.66564 (14) 0.14939 (14) 0.0152 (3)
H1A 0.9151 0.7124 0.1391 0.023*
H1B 1.0347 0.6329 0.0750 0.023*
H1C 1.1124 0.7131 0.1792 0.023*
O1W 0.4462 (2) 0.70203 (18) 0.52441 (17) 0.0363 (4)
O1 0.63612 (19) 0.57626 (13) 0.17124 (14) 0.0209 (3)
O2 0.75556 (18) 0.37252 (13) 0.27913 (13) 0.0208 (3)
O3 0.80235 (18) 0.42568 (13) 0.05066 (12) 0.0208 (3)
O4 1.23166 (19) 0.41015 (14) 0.13108 (14) 0.0209 (3)
O5 1.20389 (18) 0.37077 (13) 0.35944 (13) 0.0204 (3)
O6 1.36080 (17) 0.56986 (13) 0.29441 (13) 0.0199 (3)
P1 0.78594 (6) 0.47061 (4) 0.18354 (4) 0.01339 (15)
P2 1.21301 (6) 0.47175 (4) 0.26319 (4) 0.01358 (15)
H3 1.227 (5) 0.456 (3) 0.079 (3) 0.051 (10)*
H4 0.562 (5) 0.568 (3) 0.208 (3) 0.049 (10)*
H5 0.5658 (17) 0.698 (3) 0.554 (3) 0.018 (7)* 0.75
H6 0.386 (4) 0.673 (3) 0.587 (2) 0.018 (7)* 0.75
H7 0.426 (4) 0.663 (2) 0.4485 (15) 0.013 (7)* 0.75
H8 0.422 (5) 0.7827 (13) 0.509 (4) 0.038 (10)* 0.75

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0145 (7) 0.0114 (7) 0.0138 (7) −0.0006 (6) 0.0032 (6) 0.0007 (6)
C2 0.0254 (9) 0.0214 (9) 0.0164 (8) 0.0030 (7) 0.0042 (7) −0.0040 (7)
N1 0.0165 (7) 0.0123 (7) 0.0173 (7) −0.0002 (5) 0.0040 (5) 0.0017 (5)
O1W 0.0356 (9) 0.0393 (10) 0.0331 (9) 0.0008 (8) 0.0010 (7) −0.0001 (7)
O1 0.0155 (6) 0.0200 (7) 0.0283 (7) 0.0043 (5) 0.0073 (5) 0.0065 (5)
O2 0.0210 (6) 0.0164 (6) 0.0261 (7) 0.0001 (5) 0.0068 (5) 0.0073 (5)
O3 0.0217 (6) 0.0236 (7) 0.0169 (6) −0.0005 (5) 0.0022 (5) −0.0037 (5)
O4 0.0248 (7) 0.0184 (7) 0.0201 (7) 0.0019 (5) 0.0051 (5) −0.0036 (5)
O5 0.0191 (6) 0.0189 (6) 0.0227 (7) 0.0010 (5) 0.0005 (5) 0.0066 (5)
O6 0.0148 (6) 0.0193 (6) 0.0259 (7) −0.0038 (5) 0.0037 (5) −0.0049 (5)
P1 0.0127 (2) 0.0124 (2) 0.0152 (2) −0.00029 (15) 0.00251 (16) 0.00126 (15)
P2 0.0123 (2) 0.0125 (2) 0.0158 (2) 0.00017 (15) 0.00167 (16) 0.00006 (15)

Geometric parameters (Å, °)

C1—N1 1.512 (2) O1W—H6 0.896 (10)
C1—C2 1.531 (2) O1W—H7 0.900 (10)
C1—P1 1.8479 (17) O1W—H8 0.888 (10)
C1—P2 1.8505 (17) O1—P1 1.5666 (14)
C2—H2A 0.9600 O1—H4 0.71 (3)
C2—H2B 0.9600 O2—P1 1.4940 (13)
C2—H2C 0.9600 O3—P1 1.5093 (13)
N1—H1A 0.8900 O4—P2 1.5706 (14)
N1—H1B 0.8900 O4—H3 0.73 (4)
N1—H1C 0.8900 O5—P2 1.4914 (13)
O1W—H5 0.893 (10) O6—P2 1.5106 (13)
N1—C1—C2 106.82 (14) H5—O1W—H7 109 (3)
N1—C1—P1 108.51 (11) H6—O1W—H7 118 (3)
C2—C1—P1 108.82 (12) H5—O1W—H8 106 (3)
N1—C1—P2 106.91 (11) H6—O1W—H8 111 (3)
C2—C1—P2 109.54 (12) H7—O1W—H8 106 (3)
P1—C1—P2 115.87 (9) P1—O1—H4 116 (3)
C1—C2—H2A 109.5 P2—O4—H3 113 (3)
C1—C2—H2B 109.5 O2—P1—O3 116.77 (8)
H2A—C2—H2B 109.5 O2—P1—O1 113.10 (8)
C1—C2—H2C 109.5 O3—P1—O1 107.04 (8)
H2A—C2—H2C 109.5 O2—P1—C1 109.10 (8)
H2B—C2—H2C 109.5 O3—P1—C1 108.44 (8)
C1—N1—H1A 109.5 O1—P1—C1 101.18 (8)
C1—N1—H1B 109.5 O5—P2—O6 116.47 (8)
H1A—N1—H1B 109.5 O5—P2—O4 109.10 (8)
C1—N1—H1C 109.5 O6—P2—O4 109.82 (8)
H1A—N1—H1C 109.5 O5—P2—C1 109.54 (8)
H1B—N1—H1C 109.5 O6—P2—C1 104.71 (8)
H5—O1W—H6 107 (3) O4—P2—C1 106.71 (8)
N1—C1—P1—O2 −176.13 (11) N1—C1—P2—O5 177.18 (11)
C2—C1—P1—O2 −60.25 (14) C2—C1—P2—O5 61.79 (14)
P2—C1—P1—O2 63.66 (11) P1—C1—P2—O5 −61.75 (11)
N1—C1—P1—O3 55.70 (13) N1—C1—P2—O6 51.57 (12)
C2—C1—P1—O3 171.58 (12) C2—C1—P2—O6 −63.82 (13)
P2—C1—P1—O3 −64.51 (11) P1—C1—P2—O6 172.64 (9)
N1—C1—P1—O1 −56.68 (12) N1—C1—P2—O4 −64.85 (12)
C2—C1—P1—O1 59.20 (13) C2—C1—P2—O4 179.76 (12)
P2—C1—P1—O1 −176.89 (9) P1—C1—P2—O4 56.22 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O2i 0.89 1.98 2.809 (2) 155
N1—H1A···O5i 0.89 1.90 2.713 (2) 151
N1—H1B···O3ii 0.89 2.01 2.824 (2) 152
O4—H3···O3ii 0.73 (4) 1.86 (4) 2.591 (2) 176 (4)
O1—H4···O6iii 0.71 (3) 1.84 (3) 2.550 (2) 172 (4)
O1W—H5···O5iv 0.89 (1) 1.95 (2) 2.804 (2) 159 (3)
O1W—H8···O1v 0.89 (1) 2.64 (4) 3.061 (2) 110 (3)
O1W—H8···O3vi 0.89 (1) 2.27 (2) 3.041 (2) 145 (3)
O1W—H6···O2vii 0.90 (1) 1.94 (1) 2.828 (2) 175 (3)
O1W—H7···O6iii 0.90 (1) 1.92 (1) 2.815 (2) 173 (3)

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z; (iii) x−1, y, z; (iv) −x+2, −y+1, −z+1; (v) x, −y+3/2, z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2053).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent No. 4 239 695.
  3. Clearfield, A. (2002). Recent Opin. Solid Mater. Sci.6, 495–506.
  4. Ding, D., Yin, M., Lu, H., Fan, Y., Hou, H. & Wang, Y. (2006). J. Solid State Chem.179, 747–752.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Fernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289–o292. [DOI] [PubMed]
  7. Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem.51, 421–601.
  8. Li, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). J. Coord. Chem.61(3), 372–383.
  9. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Yin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem.178, 1049–1053.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008770/rn2053sup1.cif

e-65-0o787-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008770/rn2053Isup2.hkl

e-65-0o787-Isup2.hkl (97KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES