Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o824. doi: 10.1107/S1600536809008599

4,4′-(1,2,4,5-Tetra­zine-3,6-di­yl)dibenzo­nitrile

Grzegorz Dutkiewicz a, Teresa Borowiak a,*, Jarosław Spychała a
PMCID: PMC2968976  PMID: 21582544

Abstract

Mol­ecules of the title compound, C16H8N6, lie on crystallographic inversion centres. A dihedral angle of 16.1 (1)° is formed between the central tetra­zine ring and the plane of each cyano­phenyl group. The mol­ecules form stacks along [100] with a perpendicular inter­planar separation of 3.25 (1) Å. C—H⋯N inter­actions are formed between mol­ecules in neighbouring stacks.

Related literature

For synthesis details, see: Spychała et al. (1994, 2000). For related structures and discussion, see: Higashi & Osaki (1981); Infantes et al. (2003).graphic file with name e-65-0o824-scheme1.jpg

Experimental

Crystal data

  • C16H8N6

  • M r = 284.28

  • Monoclinic, Inline graphic

  • a = 4.8447 (5) Å

  • b = 12.1054 (12) Å

  • c = 11.6927 (11) Å

  • β = 94.363 (8)°

  • V = 683.75 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.45 × 0.2 × 0.1 mm

Data collection

  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.925, T max = 0.991

  • 5912 measured reflections

  • 1768 independent reflections

  • 1094 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.135

  • S = 1.06

  • 1768 reflections

  • 116 parameters

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008599/bi2354sup1.cif

e-65-0o824-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008599/bi2354Isup2.hkl

e-65-0o824-Isup2.hkl (87.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N10i 0.989 (17) 2.539 (17) 3.370 (2) 141.6 (13)
C8—H8⋯N2ii 0.956 (17) 2.850 (17) 3.6106 (19) 137.2 (12)
C9—H9⋯N10iii 0.993 (17) 2.754 (17) 3.431 (2) 125.8 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by funds from Adam Mickiewicz University, Faculty of Chemistry.

supplementary crystallographic information

Comment

Infantes et al. (2003) have found that the supramolecular structures of some substituted phenyl derivatives of 1,2,4,5-tetrazine are comparable to those of their carboxylic acid analogues. Being inspired by that, we have compared the supramolecular structures of the title compound 3,6-bis(4-cyanophenyl)-1,2,4,5-tetrazine (hereafter I) and p-cyanobenzoic acid (Higashi & Osaki, 1981) (hereafter II).

In (I), the tetrazine molecule is located on a crystallographic inversion centre (Fig. 1). The phenyl rings are twisted with respect to the tetrazine ring by 16.1 (1)° in opposite directions. The cyano-groups are coplanar with their phenyl rings. Two C6—H6···N10(cyano) interactions related by a centre of inversion can be considered to link the molecules into 1-D chains (Fig. 2). The chains are "stepped" rather than flat (Fig. 3). Each molecule interacts with the neighbouring chain through C8—H8···N2(tetrazine) and C9—H9···N10(cyano) interactions (Fig. 2), and the molecules are stacked along [100] with a perpendicular interplanar spacing of 3.25 (1) Å. This structure contrasts with the layered structures of other phenyl-derivatives of 1,2,4,5 tetrazines described in the paper by Infantes et al. (2003).

In the crystal structure of (II), similar 1-D chains are formed through the well-known centrosymmetric carboxylic acid dimer on one side of the molecule and centrosymmetric C—H···N(cyano) interactions on the other side of the molecule. The latter interactions are closely comparable to those in (I), except that the chains in (II) lie in approximately flat layers parallel to the (201) planes. The distinction between the two structures arises because of differences between the lateral C—H···O interactions between chains in (II) and the C—H···N(tetrazine) and C—H···N(cyano) interactions in (I).

Experimental

The title compound was obtained from a multi-step procedure starting from 4-amidinobenzamide hydrochloride and anhydrous hydrazine. Dehydration of the biscarbamoyl intermediate compound to the appropriate biscyano red product was effected by means of phosphorus oxychloride in the same way as described for 2,4-bis(4- carbamoylphenyl)-1,3,5-triazine (Spychała et al., 1994; Spychała (2000). M.p. 568–570 K (acetone); δH (CDCl3, TMS) 7.94 (d, 4H, J = 8.8 Hz, CH), 8.82 (d, 4H, J = 8.8 Hz, CH); δC (DMSO-d6) 114.7, 117.8, 128.2, 133.0, 135.6, 162.4; MS (EI) 284 (M+, C16H8N6; 13), 128 (100), 102 (9), 101 (33), 100 (7), 77 (9), 76 (12), 75 (16), 74 (4), 64 (11).

Single crystals were grown from hot acetone by slow cooling.

Refinement

All H atoms were found from difference Fourier maps and refined freely with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

Molecular structure showing displacement ellipsoids at the 50% probability level for non-H atoms. Symmetry code: (i) -x, -y, -z.

Fig. 2.

Fig. 2.

Chains of molecules (horizontal) linked by centrosymmetric pairs of C—H···N(cyano) interactions.

Fig. 3.

Fig. 3.

Stacks of molecules (vertical) showing the "stepped" arrangement within the 1-D chains.

Crystal data

C16H8N6 F(000) = 292
Mr = 284.28 Dx = 1.381 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2059 reflections
a = 4.8447 (5) Å θ = 2.4–29.6°
b = 12.1054 (12) Å µ = 0.09 mm1
c = 11.6927 (11) Å T = 291 K
β = 94.363 (8)° Block, orange
V = 683.75 (12) Å3 0.45 × 0.2 × 0.1 mm
Z = 2

Data collection

Kuma KM-4-CCD diffractometer 1768 independent reflections
Radiation source: fine-focus sealed tube 1094 reflections with I > 2σ(I)
graphite Rint = 0.017
Detector resolution: 8.1929 pixels mm-1 θmax = 29.7°, θmin = 3.4°
ω scans h = −6→6
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −16→15
Tmin = 0.925, Tmax = 0.991 l = −15→14
5912 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: difference Fourier map
wR(F2) = 0.135 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.0311P] where P = (Fo2 + 2Fc2)/3
1768 reflections (Δ/σ)max < 0.001
116 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.2003 (2) 0.01444 (9) −0.08623 (10) 0.0532 (4)
N2 −0.0256 (2) 0.09630 (9) −0.05942 (10) 0.0528 (4)
C3 0.1693 (2) 0.07922 (10) 0.02639 (10) 0.0418 (3)
C4 0.3614 (2) 0.17078 (10) 0.05676 (11) 0.0434 (3)
C5 0.3849 (3) 0.25828 (12) −0.01845 (13) 0.0546 (4)
C6 0.5664 (3) 0.34327 (13) 0.00878 (14) 0.0596 (4)
C7 0.7235 (3) 0.34205 (12) 0.11308 (13) 0.0542 (4)
C8 0.7010 (3) 0.25569 (14) 0.18883 (14) 0.0626 (5)
C9 0.5218 (3) 0.16937 (13) 0.16039 (13) 0.0564 (4)
C10 0.9104 (3) 0.43269 (15) 0.14189 (14) 0.0682 (5)
N10 1.0547 (4) 0.50498 (14) 0.16340 (14) 0.0986 (6)
H6 0.588 (3) 0.4047 (13) −0.0455 (16) 0.080 (5)*
H5 0.271 (3) 0.2606 (13) −0.0895 (14) 0.065 (4)*
H8 0.811 (3) 0.2535 (13) 0.2601 (15) 0.078 (5)*
H9 0.509 (3) 0.1054 (14) 0.2128 (14) 0.076 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0548 (7) 0.0474 (7) 0.0549 (7) −0.0081 (5) −0.0131 (5) 0.0051 (5)
N2 0.0546 (7) 0.0469 (7) 0.0542 (7) −0.0070 (5) −0.0128 (5) 0.0056 (5)
C3 0.0429 (7) 0.0433 (7) 0.0388 (7) −0.0019 (6) 0.0003 (5) −0.0008 (5)
C4 0.0423 (7) 0.0441 (7) 0.0433 (7) −0.0026 (6) −0.0005 (5) −0.0012 (6)
C5 0.0578 (8) 0.0545 (9) 0.0496 (8) −0.0100 (7) −0.0075 (6) 0.0061 (7)
C6 0.0670 (10) 0.0537 (9) 0.0572 (9) −0.0152 (8) −0.0005 (7) 0.0056 (7)
C7 0.0534 (8) 0.0538 (9) 0.0553 (9) −0.0146 (7) 0.0033 (6) −0.0068 (7)
C8 0.0640 (9) 0.0719 (10) 0.0494 (8) −0.0190 (8) −0.0114 (7) 0.0007 (8)
C9 0.0620 (9) 0.0566 (9) 0.0487 (8) −0.0149 (7) −0.0086 (7) 0.0060 (7)
C10 0.0749 (10) 0.0741 (11) 0.0554 (9) −0.0259 (9) 0.0034 (8) −0.0063 (8)
N10 0.1182 (13) 0.1029 (13) 0.0742 (11) −0.0672 (11) 0.0037 (9) −0.0105 (9)

Geometric parameters (Å, °)

N1—N2 1.3254 (14) C6—C7 1.388 (2)
N1—C3i 1.3347 (17) C6—H6 0.989 (17)
N2—C3 1.3403 (17) C7—C8 1.380 (2)
C3—N1i 1.3347 (17) C7—C10 1.446 (2)
C3—C4 1.4735 (17) C8—C9 1.383 (2)
C4—C5 1.3869 (19) C8—H8 0.955 (17)
C4—C9 1.3888 (18) C9—H9 0.993 (17)
C5—C6 1.375 (2) C10—N10 1.1360 (18)
C5—H5 0.962 (16)
N2—N1—C3i 117.81 (11) C5—C6—H6 120.8 (10)
N1—N2—C3 117.55 (11) C7—C6—H6 119.6 (10)
N1i—C3—N2 124.64 (11) C8—C7—C6 120.49 (13)
N1i—C3—C4 117.94 (11) C8—C7—C10 120.27 (13)
N2—C3—C4 117.42 (11) C6—C7—C10 119.25 (14)
C5—C4—C9 119.68 (12) C7—C8—C9 119.80 (14)
C5—C4—C3 120.17 (12) C7—C8—H8 121.0 (10)
C9—C4—C3 120.15 (12) C9—C8—H8 119.1 (10)
C6—C5—C4 120.43 (13) C8—C9—C4 119.99 (14)
C6—C5—H5 119.6 (9) C8—C9—H9 120.7 (10)
C4—C5—H5 120.0 (9) C4—C9—H9 119.4 (10)
C5—C6—C7 119.60 (14) N10—C10—C7 178.9 (2)
C3i—N1—N2—C3 −0.3 (2) C4—C5—C6—C7 −1.0 (2)
N1—N2—C3—N1i 0.3 (2) C5—C6—C7—C8 0.7 (2)
N1—N2—C3—C4 −179.39 (11) C5—C6—C7—C10 −178.94 (15)
N1i—C3—C4—C5 164.01 (13) C6—C7—C8—C9 0.4 (3)
N2—C3—C4—C5 −16.25 (19) C10—C7—C8—C9 −179.95 (15)
N1i—C3—C4—C9 −15.40 (19) C7—C8—C9—C4 −1.2 (3)
N2—C3—C4—C9 164.34 (13) C5—C4—C9—C8 0.9 (2)
C9—C4—C5—C6 0.2 (2) C3—C4—C9—C8 −179.71 (14)
C3—C4—C5—C6 −179.18 (13)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···N10ii 0.989 (17) 2.539 (17) 3.370 (2) 141.6 (13)
C8—H8···N2iii 0.956 (17) 2.850 (17) 3.6106 (19) 137.2 (12)
C9—H9···N10iv 0.993 (17) 2.754 (17) 3.431 (2) 125.8 (12)

Symmetry codes: (ii) −x+2, −y+1, −z; (iii) x+1, −y+1/2, z+1/2; (iv) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2354).

References

  1. Higashi, T. & Osaki, K. (1981). Acta Cryst. B37, 777–779.
  2. Infantes, L., Mahon, M. F., Male, L., Raithby, P. R., Teat, S. J., Sauer, J., Jagerovic, N., Elguero, J. & Motherwell, S. (2003). Helv. Chim. Acta, 86, 1205–1221.
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  4. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Poland, Wrocław, Poland.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Spychała, J. (2000). Synth. Commun.30, 1083–1094.
  8. Spychała, J., Boykin, D. W., Wilson, W. D., Zhao, M., Tidwell, R. R., Dykstra, C. C., Hall, J. E., Jones, S. K. & Schinazi, R. F. (1994). Eur. J. Med. Chem.29, 363–367. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008599/bi2354sup1.cif

e-65-0o824-sup1.cif (14KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008599/bi2354Isup2.hkl

e-65-0o824-Isup2.hkl (87.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES