Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o812–o813. doi: 10.1107/S1600536809009404

4-(Dimethyl­amino)phenyl ethynyl telluride

Joan Farran a, Angel Alvarez-Larena a, Joan F Piniella a, Mario V Capparelli a,*
PMCID: PMC2968982  PMID: 21582534

Abstract

The title compound, C10H11NTe, is the first organyl ethynyl telluride, R—Te—C C—H, to be structurally characterized. In the L-shaped mol­ecule, the aryl moiety, viz. Me2NC6H4Te, is almost perpendicular to the Te—C C—H fragment. The Te—Csp 2 bond [2.115 (3) Å] is significantly longer than the Te—Csp bond [2.041 (4) Å]. The Te—C C group is approximately linear [Te—C—C = 178.5 (4)° and C C = 1.161 (5) Å], while the coordination at the Te atom is angular [C—Te—C = 95.92 (14)°]. In the crystal structure, there are Csp—H⋯N hydrogen bonds which are perpendicular to the CNMe2 group; the N atom displays some degree of pyramidalization. Centrosymmetrically related pairs of mol­ecules are linked by Te⋯π(ar­yl) inter­actions, with Te⋯Cg = 3.683 (4) Å and Csp—Te⋯Cg = 159.1 (2)° (Cg is the centroid of the benzene ring). These inter­actions lead to the formation of zigzag ribbons which run along c and are approximately parallel to (110).

Related literature

For general background, see: Dabdoub et al. (1998); Gillespie & Hargittai (1991); Kauffmann & Ahlers (1983); Murai et al. (1994); Petragnani (1994); Potapov & Trofimov (2005); Schulz Lang et al. (2006); Yoshimatsu (2005); Zukerman-Schpector & Haiduc (2001). For related structures, see: Farran et al. (2002). For details of the synthesis, see: Brandsma (1988); Petragnani et al. (1975). graphic file with name e-65-0o812-scheme1.jpg

Experimental

Crystal data

  • C10H11NTe

  • M r = 272.80

  • Triclinic, Inline graphic

  • a = 7.8857 (7) Å

  • b = 8.3851 (8) Å

  • c = 9.3364 (9) Å

  • α = 65.788 (2)°

  • β = 66.922 (1)°

  • γ = 83.444 (2)°

  • V = 517.18 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 294 K

  • 0.36 × 0.30 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.403, T max = 0.754

  • 3574 measured reflections

  • 2401 independent reflections

  • 2080 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.087

  • S = 1.04

  • 2401 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009404/bg2241sup1.cif

e-65-0o812-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009404/bg2241Isup2.hkl

e-65-0o812-Isup2.hkl (115.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.93 2.48 3.379 (6) 163

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the European Union (project No. CI1*.0574.ES). JF thanks the Generalitat de Catalunya for an FI grant and MVC thanks the Ministerio de Educación y Cultura of Spain for a sabbatical grant (project No. SAB95-0281). The sample studied was kindly provided by Professor L. Torres-Castellanos. The X-ray measurements were carried out at the Servei de Difracció de Raigs X (UAB).

supplementary crystallographic information

Comment

Although organotellurium compounds have attracted considerable interest as reagents and intermediates in organic synthesis (Petragnani, 1994), only a limited number of compounds with mono- and ditelluroethyne cores, R—Te—C≡CH and R—Te—C≡C-Te—R', have been reported, in spite of the potential reactivity of the acetylene unit towards addition reactions. We recently reported the syntheses and crystal structures of several symmetrical (R = R') bis(aryltelluro)ethynes, Ar—Te—C≡C-Te—Ar (Farran et al., 2002). On the other hand, only five R—Te—C≡CH derivatives have been prepared so far, with R = Me, Et, iPr, n-Bu and Ph (Kauffmann & Ahlers, 1983; Dabdoub et al., 1998; Potapov & Trofimov, 2005; Yoshimatsu, 2005), and none has been structurally characterized (in addition, molecular orbital calculations for R = HC≡C were carried out by Murai et al., 1994). Here we describe the crystal structure of the title compound (R = p-Me2NC6H4), the first of an organyl ethynyl telluride to be reported.

The structure analysis showed that the crystal contains discrete L-shaped molecules of the title compound (Figure 1), in which the aryl moiety, Me2NC6H4Te, is almost perpendicular to the Te—C≡C-H fragment (cf. C—Te—C angle, Table 1), but bent ca 13° towards the C12—C13 side of the ring (cf. C—Te—C—C angles, Table 1), probably to optimize the C—H···N interaction (see below).

As expected, the Te—C(sp2) bond is significantly longer than the Te—C(sp) one. The Te—C≡C moiety is approximately linear, while the coordination at the Te atom is angular, as predicted by the valence-shell electron-pair repulsion (VSEPR) model for an AX2E2 molecule (Gillespie & Hargittai, 1991). The values of these geometric parameters (Table 1) are similar to the ranges observed in several bis(arytelluro)ethynes, Ar—Te—C≡C-Te—Ar (Farran et al., 2002), viz. Te—C(sp2), 2.103 (5)–2.142 (6) Å; Te—C(sp), 2.021 (6)–2.058 (6) Å; C≡C, 1.166 (12)–1.203 (11) Å and C—Te—C, 94.2 (3)–97.2 (2)°, which are substantially smaller than the tetrahedral value (109.5°) due to the repulsion of the lone pairs of electrons on the bonded ones.

In the crystal structure the molecules are linked by C(sp)—H···N hydrogen bonds (Table 2) which are perpendicular to the CNMe2 group. The N atom displays some degree of pyramidalization: it is 0.123 (5) Å out of the plane of the three C atoms, towards the H atom. There are also Te···π(aryl) interactions, similar to those described by Zukerman-Schpector & Haiduc (2001) or Schulz Lang et al. (2006) for Te(IV) compounds, in which centrosymmetrically related pairs of molecules are at Te···Cg 3.683 (4) Å and C(sp)—Te···Cg 159.1 (2)° (Cg = centroid of the phenyl ring at 1 - x, -y, 1 - z). These interactions lead to the formation of zigzag ribbons, made of pairs of chains, which run along c and are approximately parallel to (110) (Figure 2).

Experimental

Ethynyl magnesium bromide, HC≡CMgBr, was prepared according to published procedures (Brandsma, 1988). The corresponding diaryl ditelluride, (Me2NC6H4Te)2, was synthesized as reported elsewhere (Petragnani et al., 1975). A dark solution of the diaryl ditelluride (2.0 mmol, 0.94 g) in 40 ml of THF was treated dropwise with bromine (2.0 mmol, 0.32 g, 0.10 ml) in 10 ml of benzene, at 0°C, in N2 atmosphere, while efficient cooling was applied. The Grignard reagent was then added dropwise. Gradual disappearance of the dark color of the solution was observed until it finally became almost colorless when about 10% excess of the reagent was added. After stirring for 30 min at room temperature, the solution was diluted with 50 ml of low boiling point petroleum ether, treated with aqueous NH4Cl and washed with brine. The organic layer was dried over magnesium sulfate and the solvents were evaporated. The residue was purified by flash chromatography (silica gel/hexane). Yield 51%. Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution. The specimen used for data collection was air-protected with a thin coat of Loctite epoxy adhesive.

Refinement

Hydrogen atoms were placed in calculated positions using a riding atom model with fixed C—H distances [0.93 Å for C(sp) and C(sp2), 0.96 Å for C(sp3)] and Uiso = p Ueq(parent atom) [p = 1.2 for C(sp) and C(sp2), 1.5 for C(sp3)].

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atomic numbering. Displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

View of the zigzag ribbon generated by the hydrogen bonds and the Te···π(aryl) interactions (shown as dashed lines).

Crystal data

C10H11NTe Z = 2
Mr = 272.80 F(000) = 260
Triclinic, P1 Dx = 1.752 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8857 (7) Å Cell parameters from 1735 reflections
b = 8.3851 (8) Å θ = 2.7–25.6°
c = 9.3364 (9) Å µ = 2.82 mm1
α = 65.788 (2)° T = 294 K
β = 66.922 (1)° Plate, pale brown
γ = 83.444 (2)° 0.36 × 0.30 × 0.10 mm
V = 517.18 (8) Å3

Data collection

Brruker SMART APEX diffractometer 2401 independent reflections
Radiation source: fine-focus sealed tube 2080 reflections with I > 2σ(I)
graphite Rint = 0.012
Detector resolution: 8.13 pixels mm-1 θmax = 28.9°, θmin = 2.6°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −10→10
Tmin = 0.403, Tmax = 0.754 l = −10→12
3574 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1129P] where P = (Fo2 + 2Fc2)/3
2401 reflections (Δ/σ)max = 0.005
110 parameters Δρmax = 0.75 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Te1 0.45985 (3) 0.02042 (3) 0.26991 (3) 0.06634 (13)
C1 0.3522 (5) 0.1483 (5) 0.0886 (5) 0.0612 (8)
C2 0.2942 (7) 0.2203 (6) −0.0170 (6) 0.0747 (11)
H2 0.2478 0.2779 −0.1016 0.090*
C11 0.3173 (5) 0.1554 (5) 0.4271 (4) 0.0532 (7)
C12 0.3748 (5) 0.3243 (5) 0.3871 (5) 0.0608 (9)
H12 0.4778 0.3792 0.2894 0.073*
C13 0.2819 (5) 0.4118 (5) 0.4899 (5) 0.0595 (8)
H13 0.3219 0.5256 0.4592 0.071*
C14 0.1272 (5) 0.3316 (4) 0.6407 (4) 0.0515 (7)
C15 0.0702 (5) 0.1609 (5) 0.6793 (5) 0.0568 (8)
H15 −0.0321 0.1042 0.7771 0.068*
C16 0.1641 (5) 0.0766 (4) 0.5739 (5) 0.0566 (8)
H16 0.1236 −0.0362 0.6022 0.068*
N1 0.0368 (5) 0.4146 (5) 0.7474 (4) 0.0639 (8)
C17 0.0794 (7) 0.5988 (5) 0.6960 (6) 0.0714 (11)
H171 0.0033 0.6351 0.7852 0.107*
H172 0.0561 0.6671 0.5949 0.107*
H173 0.2071 0.6158 0.6739 0.107*
C18 −0.1341 (7) 0.3391 (7) 0.8888 (6) 0.0834 (13)
H181 −0.1834 0.4182 0.9439 0.125*
H182 −0.1121 0.2302 0.9681 0.125*
H183 −0.2209 0.3184 0.8485 0.125*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Te1 0.0694 (2) 0.0780 (2) 0.06248 (18) 0.02561 (14) −0.03447 (14) −0.03496 (14)
C1 0.061 (2) 0.067 (2) 0.060 (2) 0.0095 (17) −0.0267 (17) −0.0276 (17)
C2 0.085 (3) 0.081 (3) 0.069 (2) 0.023 (2) −0.041 (2) −0.033 (2)
C11 0.0526 (18) 0.061 (2) 0.0527 (18) 0.0111 (15) −0.0256 (15) −0.0263 (15)
C12 0.0518 (18) 0.067 (2) 0.056 (2) −0.0026 (16) −0.0174 (16) −0.0194 (17)
C13 0.060 (2) 0.0532 (19) 0.064 (2) −0.0041 (16) −0.0241 (17) −0.0194 (16)
C14 0.0541 (18) 0.0528 (18) 0.0510 (17) 0.0093 (14) −0.0274 (15) −0.0186 (14)
C15 0.0558 (19) 0.0539 (19) 0.0522 (18) −0.0010 (15) −0.0163 (15) −0.0163 (15)
C16 0.064 (2) 0.0460 (17) 0.061 (2) 0.0023 (15) −0.0293 (17) −0.0174 (15)
N1 0.070 (2) 0.0569 (17) 0.0628 (19) 0.0078 (14) −0.0228 (16) −0.0254 (14)
C17 0.088 (3) 0.062 (2) 0.085 (3) 0.019 (2) −0.048 (2) −0.039 (2)
C18 0.076 (3) 0.095 (3) 0.073 (3) 0.013 (2) −0.015 (2) −0.043 (2)

Geometric parameters (Å, °)

Te1—C1 2.041 (4) C15—C16 1.376 (5)
Te1—C11 2.115 (3) C15—H15 0.9300
C1—C2 1.161 (5) C16—H16 0.9300
C2—H2 0.9300 N1—C18 1.440 (6)
C11—C16 1.384 (5) N1—C17 1.454 (6)
C11—C12 1.390 (5) C17—H171 0.9600
C12—C13 1.378 (5) C17—H172 0.9600
C12—H12 0.9300 C17—H173 0.9600
C13—C14 1.410 (5) C18—H181 0.9600
C13—H13 0.9300 C18—H182 0.9600
C14—N1 1.372 (5) C18—H183 0.9600
C14—C15 1.407 (5)
C1—Te1—C11 95.92 (14) C15—C16—C11 121.8 (3)
C2—C1—Te1 178.5 (4) C15—C16—H16 119.1
C1—C2—H2 180.0 C11—C16—H16 119.1
C16—C11—C12 118.1 (3) C14—N1—C18 120.5 (3)
C16—C11—Te1 120.6 (3) C14—N1—C17 120.7 (4)
C12—C11—Te1 121.3 (3) C18—N1—C17 116.6 (4)
C13—C12—C11 121.2 (3) N1—C17—H171 109.5
C13—C12—H12 119.4 N1—C17—H172 109.5
C11—C12—H12 119.4 H171—C17—H172 109.5
C12—C13—C14 121.0 (3) N1—C17—H173 109.5
C12—C13—H13 119.5 H171—C17—H173 109.5
C14—C13—H13 119.5 H172—C17—H173 109.5
N1—C14—C15 121.0 (3) N1—C18—H181 109.5
N1—C14—C13 121.8 (3) N1—C18—H182 109.5
C15—C14—C13 117.2 (3) H181—C18—H182 109.5
C16—C15—C14 120.8 (3) N1—C18—H183 109.5
C16—C15—H15 119.6 H181—C18—H183 109.5
C14—C15—H15 119.6 H182—C18—H183 109.5
C1—Te1—C11—C16 102.7 (3) C13—C14—C15—C16 0.7 (5)
C1—Te1—C11—C12 −77.8 (3) C14—C15—C16—C11 0.1 (6)
C16—C11—C12—C13 −0.4 (6) C12—C11—C16—C15 −0.3 (5)
Te1—C11—C12—C13 −179.9 (3) Te1—C11—C16—C15 179.3 (3)
C11—C12—C13—C14 1.2 (6) C15—C14—N1—C18 −8.9 (6)
C12—C13—C14—N1 177.8 (4) C13—C14—N1—C18 172.1 (4)
C12—C13—C14—C15 −1.3 (5) C15—C14—N1—C17 −171.4 (4)
N1—C14—C15—C16 −178.4 (3) C13—C14—N1—C17 9.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···N1i 0.93 2.48 3.379 (6) 163

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2241).

References

  1. Brandsma, L. (1988). Preparative Acetylenic Chemistry, p. 27. Amsterdam: Elsevier.
  2. Bruker (2001). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dabdoub, M. J., Begnini, M. L. & Guerrero, P. G. Jr (1998). Tetrahedron, 54, 2371–2400.
  5. Farran, J., Torres-Castellanos, L., Alvarez-Larena, A., Piniella, J. F. & Capparelli, M. V. (2002). J. Organomet. Chem.654, 91–99.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Gillespie, R. J. & Hargittai, I. (1991). In The VSEPR Model of Molecular Geometry Boston: Allyn & Bacon.
  9. Kauffmann, T. & Ahlers, H. (1983). Chem. Ber.116, 1001–1008.
  10. Murai, T., Shimizu, A., Tatematsu, S., Ono, K., Kanda, T. & Kato, S. (1994). Heteroat. Chem.5, 31–35.
  11. Petragnani, N. (1994). In Tellurium in Organic Synthesis London: Academic Press.
  12. Petragnani, N., Torres, L. & Wynne, K. J. (1975). J. Organomet. Chem.92, 185–189.
  13. Potapov, V. A. & Trofimov, B. A. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 957–1005. Stuttgart: Georg Thieme.
  14. Schulz Lang, E., Manzoni de Oliveira, G. & Casagrande, G. A. (2006). J. Organomet. Chem.691, 59–64.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Yoshimatsu, M. (2005). Science of Synthesis. Houben-Weyl Methods of Molecular Transformations, Vol. 24, edited by A. de Meijere, pp. 563–569. Stuttgart: Georg Thieme.
  18. Zukerman-Schpector, J. & Haiduc, I. (2001). Phosphorus Sulfur Silicon Relat. Elem.171, 73–112.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009404/bg2241sup1.cif

e-65-0o812-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009404/bg2241Isup2.hkl

e-65-0o812-Isup2.hkl (115.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES