Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):m410. doi: 10.1107/S1600536809008824

catena-Poly[[[diaqua­terbium(III)]-μ-6-carboxy­nicotinato-μ-pyridine-2,5-di­carboxyl­ato] dihydrate]

Sheng Li a,*, Fu-Li Zhang b, Shou-Bin Wang c, Hui-Ling Bai a
PMCID: PMC2968984  PMID: 21582353

Abstract

The title compound, {[Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2O}n, is isotypic with the analogous TmIII compound [Li, Zhang, Wang & Bai (2009). Acta Cryst. E65, m411]. The TbIII atom is octa­coordinated by two water mol­ecules and by four carboxyl­ate O atoms and two pyridyl N atoms from two pyridine-2,5-dicarboxyl­ate (2,5-pydc) and two 6-carboxy­nicotinate (2,5-Hpydc) ligands. The 2,5-pydc and 2,5-Hpydc ligands bridge TbIII atoms, generating helical coordination polymers along [001]. An extensive network of O—H⋯O hydrogen bonds is formed between the coordination polymers and the uncoordinated water mol­ecules. The refined Flack parameter of 0.54 (2) suggests inversion twinning.

Related literature

For the isotypic TmIII compound, see Li et al. (2009). For other related structures, see: Huang et al. (2007).graphic file with name e-65-0m410-scheme1.jpg

Experimental

Crystal data

  • [Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2O

  • M r = 562.20

  • Tetragonal, Inline graphic

  • a = 15.107 (2) Å

  • c = 14.8587 (15) Å

  • V = 3391.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.25 mm−1

  • T = 298 K

  • 0.12 × 0.11 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.617, T max = 0.713

  • 6901 measured reflections

  • 3001 independent reflections

  • 2886 reflections with I > 2σ(I)

  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.131

  • S = 1.03

  • 3001 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 3.51 e Å−3

  • Δρmin = −1.17 e Å−3

  • Absolute structure: Flack (1983), with 1387 Friedel pairs

  • Flack parameter: 0.54 (2)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008824/bi2349sup1.cif

e-65-0m410-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008824/bi2349Isup2.hkl

e-65-0m410-Isup2.hkl (147.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O12i 0.85 1.98 2.801 (12) 162
O9—H91⋯O4ii 0.85 1.86 2.706 (10) 180
O9—H92⋯O4iii 0.85 1.99 2.842 (11) 180
O10—H101⋯O7iv 0.85 1.83 2.679 (11) 179
O10—H102⋯O9i 0.85 2.15 3.000 (11) 180
O11—H111⋯O5 0.85 2.00 2.851 (12) 180
O11—H112⋯O2iv 0.85 1.91 2.758 (12) 180
O12—H121⋯O6v 0.85 2.15 3.000 (12) 180
O12—H122⋯O6vi 0.85 2.08 2.930 (13) 180

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Scientific Research Foundation of Outstanding Talented Persons of Henan Province (grant No. 74200510014).

supplementary crystallographic information

Comment

The asymmetric unit of the title compound is shown in Fig. 1. Atom Tb1 displays octa-coordination through two water molecules, four carboxylate O atoms and two pyridyl N atoms from two 2,5-pydc and two 2,5-Hpydc ligands (2,5-pydc = pyridine-2,5-dicarboxylate). The 2,5-pydc and 2,5-Hpydc ligands bridge between TbIII atoms to generate helical coordination polymers along [001] (Fig. 2). An extensive network of O—H···O hydrogen bonds is formed between the coordination polymers and the lattice water molecules (Table 1 and Fig. 3).

Experimental

A mixture of terbium oxide (0.5 mmol), pyridine-2,5-dicarboxylic acid (0.5 mmol), in H2O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Colourless crystals were obtained after cooling to room temperature with a yield of 27%. Elemental analysis calculated for C14H15N2TbO12: C 30.68, H 2.74, N 5.11%; Found: C 30.62, H 2.72, N 5.06%.

Refinement

H atoms bound to C atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). H atoms of the water molecules were placed so as to form a reasonable H-bond network and refined as riding with Uiso(H) = 1.5Ueq(O). The Flack parameter was refined as a full least-squares variable, and the refined value of 0.54 (2) suggests inversion twinning.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

One-dimensional coordination polymer running along [001].

Fig. 3.

Fig. 3.

Projection along [001], showing the tetragonal arrangement of coordination polymers. O—H···O hydrogen bonds are shown as dashed lines.

Crystal data

[Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2O Dx = 2.202 Mg m3
Mr = 562.20 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 3001 reflections
Hall symbol: I -4 θ = 1.9–25.3°
a = 15.107 (2) Å µ = 4.25 mm1
c = 14.8587 (15) Å T = 298 K
V = 3391.1 (7) Å3 Block, colourless
Z = 8 0.12 × 0.11 × 0.08 mm
F(000) = 2192

Data collection

Bruker APEXII CCD diffractometer 3001 independent reflections
Radiation source: fine-focus sealed tube 2886 reflections with I > 2σ(I)
graphite Rint = 0.072
φ and ω scans θmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→18
Tmin = 0.617, Tmax = 0.713 k = −18→17
6901 measured reflections l = −13→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.1007P)2 + 0.8682P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3001 reflections Δρmax = 3.51 e Å3
263 parameters Δρmin = −1.17 e Å3
0 restraints Absolute structure: Flack (1983), 1387 Freidel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.54 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Tb1 0.30210 (3) 0.22535 (3) 0.22736 (3) 0.01388 (17)
C1 0.1833 (6) 0.4100 (6) 0.1946 (6) 0.0116 (19)
C2 0.1334 (7) 0.4753 (6) 0.1553 (6) 0.0148 (19)
H2A 0.1128 0.5222 0.1900 0.018*
C3 0.1132 (7) 0.4720 (7) 0.0639 (7) 0.019 (2)
H3A 0.0796 0.5166 0.0376 0.023*
C4 0.1433 (6) 0.4021 (6) 0.0129 (7) 0.015 (2)
C5 0.1879 (7) 0.3364 (7) 0.0575 (8) 0.021 (2)
H5A 0.2046 0.2864 0.0251 0.025*
C6 0.2161 (6) 0.4123 (6) 0.2921 (6) 0.015 (2)
C7 0.1302 (7) 0.3959 (7) −0.0870 (7) 0.017 (2)
C8 0.1196 (7) 0.1238 (6) 0.1716 (7) 0.014 (2)
C9 0.0975 (6) 0.1488 (6) 0.2710 (7) 0.0129 (18)
C10 0.0233 (6) 0.1192 (7) 0.3157 (7) 0.017 (2)
H10A −0.0195 0.0865 0.2854 0.021*
C11 0.0131 (7) 0.1383 (7) 0.4052 (7) 0.018 (2)
H11A −0.0351 0.1158 0.4366 0.022*
C12 0.0768 (6) 0.1929 (6) 0.4506 (6) 0.0115 (18)
C13 0.1449 (7) 0.2207 (7) 0.3980 (7) 0.019 (2)
H13A 0.1865 0.2577 0.4249 0.023*
C14 0.0684 (7) 0.2114 (7) 0.5505 (7) 0.018 (2)
N1 0.1583 (5) 0.2001 (5) 0.3112 (6) 0.0142 (16)
N2 0.2094 (5) 0.3400 (5) 0.1465 (6) 0.0142 (17)
O1 0.2739 (5) 0.3551 (4) 0.3099 (5) 0.0178 (15)
H1 0.3058 0.3643 0.3561 0.027*
O2 0.1862 (6) 0.4677 (6) 0.3436 (5) 0.035 (2)
O3 0.1625 (5) 0.3283 (5) −0.1271 (5) 0.0212 (16)
O4 0.0921 (6) 0.4561 (5) −0.1264 (5) 0.0262 (18)
O5 0.1946 (5) 0.1457 (5) 0.1459 (5) 0.0208 (16)
O6 0.0625 (5) 0.0865 (5) 0.1277 (5) 0.0240 (17)
O7 0.0056 (6) 0.1862 (6) 0.5922 (6) 0.033 (2)
O8 0.1326 (5) 0.2550 (5) 0.5846 (5) 0.0214 (16)
O9 0.3704 (5) 0.0819 (5) 0.1997 (5) 0.0240 (17)
H91 0.3822 0.0700 0.2543 0.036*
H92 0.4222 0.0849 0.1778 0.036*
O10 0.4504 (5) 0.2736 (5) 0.2620 (5) 0.0236 (16)
H101 0.4641 0.2868 0.2082 0.035*
H102 0.4875 0.2327 0.2729 0.035*
O11 0.2668 (7) 0.0205 (6) 0.0225 (6) 0.045 (2)
H111 0.2452 0.0578 0.0593 0.068*
H112 0.2812 0.0241 −0.0327 0.068*
O12 0.1257 (7) −0.0901 (6) 0.0634 (7) 0.046 (2)
H121 0.0724 −0.0890 0.0818 0.068*
H122 0.1145 −0.0821 0.0079 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tb1 0.0145 (3) 0.0144 (3) 0.0128 (2) 0.00004 (17) −0.00014 (19) 0.00015 (19)
C1 0.013 (5) 0.011 (4) 0.011 (4) −0.002 (4) 0.001 (4) 0.006 (4)
C2 0.022 (5) 0.008 (4) 0.014 (4) 0.002 (4) 0.007 (4) −0.001 (4)
C3 0.015 (5) 0.020 (5) 0.023 (5) 0.007 (4) −0.002 (4) −0.001 (4)
C4 0.017 (5) 0.013 (5) 0.016 (5) −0.003 (4) −0.011 (4) 0.000 (4)
C5 0.021 (5) 0.016 (5) 0.026 (5) 0.005 (4) −0.007 (4) −0.009 (4)
C6 0.016 (5) 0.012 (4) 0.017 (6) −0.001 (4) 0.002 (4) −0.008 (4)
C7 0.012 (5) 0.020 (5) 0.019 (5) 0.000 (4) 0.004 (4) −0.007 (4)
C8 0.023 (5) 0.006 (4) 0.012 (4) 0.004 (4) −0.003 (4) −0.006 (4)
C9 0.018 (4) 0.013 (4) 0.008 (4) −0.002 (4) −0.002 (4) 0.006 (4)
C10 0.014 (5) 0.018 (5) 0.020 (5) −0.001 (4) −0.003 (4) −0.004 (4)
C11 0.015 (5) 0.023 (5) 0.018 (5) 0.000 (4) −0.007 (4) 0.007 (4)
C12 0.008 (4) 0.015 (4) 0.012 (4) 0.004 (4) 0.008 (4) 0.000 (4)
C13 0.018 (5) 0.022 (5) 0.017 (5) 0.001 (4) −0.002 (4) −0.006 (4)
C14 0.014 (5) 0.025 (6) 0.014 (5) 0.001 (5) −0.003 (4) −0.004 (4)
N1 0.013 (4) 0.012 (4) 0.018 (4) −0.001 (3) −0.001 (4) −0.002 (4)
N2 0.013 (4) 0.015 (4) 0.015 (4) 0.003 (3) −0.002 (3) −0.002 (3)
O1 0.021 (3) 0.016 (3) 0.016 (3) −0.001 (3) −0.007 (3) −0.003 (3)
O2 0.050 (5) 0.035 (5) 0.019 (4) 0.019 (4) −0.006 (4) −0.002 (4)
O3 0.020 (4) 0.026 (4) 0.017 (4) 0.007 (3) −0.002 (3) −0.004 (3)
O4 0.032 (4) 0.024 (4) 0.022 (4) 0.017 (3) −0.006 (3) −0.002 (3)
O5 0.017 (4) 0.021 (4) 0.024 (4) −0.003 (3) 0.003 (3) −0.004 (3)
O6 0.019 (4) 0.029 (4) 0.024 (4) −0.005 (3) 0.001 (3) −0.006 (3)
O7 0.030 (4) 0.045 (5) 0.024 (4) −0.016 (4) 0.011 (4) −0.004 (4)
O8 0.019 (4) 0.032 (4) 0.013 (3) −0.010 (3) 0.002 (3) −0.007 (3)
O9 0.025 (4) 0.031 (4) 0.016 (3) 0.000 (3) 0.008 (3) 0.007 (3)
O10 0.021 (4) 0.035 (4) 0.014 (4) −0.001 (3) 0.005 (3) 0.006 (3)
O11 0.064 (6) 0.039 (5) 0.033 (5) 0.012 (5) 0.014 (5) −0.010 (4)
O12 0.053 (6) 0.045 (6) 0.039 (5) 0.018 (5) −0.004 (5) 0.011 (5)

Geometric parameters (Å, °)

Tb1—O1 2.351 (7) C8—C9 1.560 (14)
Tb1—O5 2.356 (7) C9—N1 1.341 (12)
Tb1—O8i 2.358 (7) C9—C10 1.379 (14)
Tb1—O3ii 2.371 (7) C10—C11 1.368 (16)
Tb1—O10 2.412 (7) C10—H10A 0.930
Tb1—O9 2.435 (8) C11—C12 1.435 (14)
Tb1—N2 2.531 (8) C11—H11A 0.930
Tb1—N1 2.534 (8) C12—C13 1.359 (14)
C1—N2 1.335 (13) C12—C14 1.516 (13)
C1—C2 1.373 (13) C13—N1 1.343 (15)
C1—C6 1.531 (13) C13—H13A 0.930
C2—C3 1.393 (15) C14—O7 1.195 (14)
C2—H2A 0.930 C14—O8 1.277 (12)
C3—C4 1.378 (15) O1—H1 0.850
C3—H3A 0.930 O3—Tb1i 2.371 (7)
C4—C5 1.370 (15) O8—Tb1ii 2.358 (7)
C4—C7 1.500 (15) O9—H91 0.850
C5—N2 1.363 (15) O9—H92 0.850
C5—H5A 0.930 O10—H101 0.850
C6—O2 1.221 (13) O10—H102 0.850
C6—O1 1.256 (12) O11—H111 0.850
C7—O4 1.226 (13) O11—H112 0.850
C7—O3 1.279 (13) O12—H121 0.850
C8—O6 1.219 (12) O12—H122 0.850
C8—O5 1.242 (13)
O1—Tb1—O5 124.7 (3) O1—C6—C1 114.1 (8)
O1—Tb1—O8i 116.1 (3) O4—C7—O3 123.3 (10)
O5—Tb1—O8i 83.7 (2) O4—C7—C4 119.3 (9)
O1—Tb1—O3ii 81.4 (3) O3—C7—C4 117.4 (9)
O5—Tb1—O3ii 116.7 (3) O6—C8—O5 127.2 (10)
O8i—Tb1—O3ii 140.3 (2) O6—C8—C9 117.9 (9)
O1—Tb1—O10 78.8 (2) O5—C8—C9 114.9 (8)
O5—Tb1—O10 154.8 (3) N1—C9—C10 121.9 (10)
O8i—Tb1—O10 76.4 (2) N1—C9—C8 114.6 (9)
O3ii—Tb1—O10 72.5 (2) C10—C9—C8 123.5 (9)
O1—Tb1—O9 155.1 (2) C11—C10—C9 119.4 (10)
O5—Tb1—O9 75.6 (3) C11—C10—H10A 120.3
O8i—Tb1—O9 77.5 (3) C9—C10—H10A 120.3
O3ii—Tb1—O9 75.8 (2) C10—C11—C12 120.2 (10)
O10—Tb1—O9 84.9 (3) C10—C11—H11A 119.9
O1—Tb1—N2 64.9 (3) C12—C11—H11A 119.9
O5—Tb1—N2 74.0 (3) C13—C12—C11 114.5 (9)
O8i—Tb1—N2 73.6 (3) C13—C12—C14 124.7 (10)
O3ii—Tb1—N2 142.3 (3) C11—C12—C14 120.7 (9)
O10—Tb1—N2 114.1 (3) N1—C13—C12 126.4 (10)
O9—Tb1—N2 139.8 (3) N1—C13—H13A 116.8
O1—Tb1—N1 73.4 (3) C12—C13—H13A 116.8
O5—Tb1—N1 65.5 (3) O7—C14—O8 124.1 (10)
O8i—Tb1—N1 145.1 (3) O7—C14—C12 121.0 (10)
O3ii—Tb1—N1 72.1 (3) O8—C14—C12 114.8 (9)
O10—Tb1—N1 137.5 (3) C9—N1—C13 117.4 (9)
O9—Tb1—N1 108.2 (3) C9—N1—Tb1 117.1 (7)
N2—Tb1—N1 82.1 (3) C13—N1—Tb1 124.5 (7)
N2—C1—C2 120.3 (9) C1—N2—C5 118.7 (9)
N2—C1—C6 115.4 (8) C1—N2—Tb1 116.8 (6)
C2—C1—C6 124.3 (9) C5—N2—Tb1 124.4 (7)
C1—C2—C3 120.6 (9) C6—O1—Tb1 126.1 (6)
C1—C2—H2A 119.7 C6—O1—H1 116.9
C3—C2—H2A 119.7 Tb1—O1—H1 117.0
C4—C3—C2 119.5 (9) C7—O3—Tb1i 141.6 (7)
C4—C3—H3A 120.2 C8—O5—Tb1 127.4 (6)
C2—C3—H3A 120.2 C14—O8—Tb1ii 137.7 (6)
C5—C4—C3 116.8 (9) Tb1—O9—H91 96.6
C5—C4—C7 119.9 (9) Tb1—O9—H92 114.0
C3—C4—C7 123.3 (9) H91—O9—H92 100.6
N2—C5—C4 123.9 (9) Tb1—O10—H101 95.5
N2—C5—H5A 118.0 Tb1—O10—H102 115.7
C4—C5—H5A 118.0 H101—O10—H102 100.9
O2—C6—O1 126.6 (9) H111—O11—H112 132.5
O2—C6—C1 119.3 (9) H121—O12—H122 96.9
N2—C1—C2—C3 −3.4 (15) O3ii—Tb1—N1—C13 41.3 (8)
C6—C1—C2—C3 174.1 (9) O10—Tb1—N1—C13 6.3 (10)
C1—C2—C3—C4 0.4 (15) O9—Tb1—N1—C13 109.1 (8)
C2—C3—C4—C5 3.7 (15) N2—Tb1—N1—C13 −111.0 (8)
C2—C3—C4—C7 −175.7 (10) C2—C1—N2—C5 2.2 (14)
C3—C4—C5—N2 −5.2 (16) C6—C1—N2—C5 −175.6 (9)
C7—C4—C5—N2 174.2 (10) C2—C1—N2—Tb1 179.6 (7)
N2—C1—C6—O2 −170.7 (9) C6—C1—N2—Tb1 1.9 (10)
C2—C1—C6—O2 11.7 (15) C4—C5—N2—C1 2.3 (16)
N2—C1—C6—O1 10.2 (12) C4—C5—N2—Tb1 −174.9 (8)
C2—C1—C6—O1 −167.4 (9) O1—Tb1—N2—C1 −7.5 (6)
C5—C4—C7—O4 −178.2 (10) O5—Tb1—N2—C1 134.4 (7)
C3—C4—C7—O4 1.1 (16) O8i—Tb1—N2—C1 −137.6 (7)
C5—C4—C7—O3 −0.4 (15) O3ii—Tb1—N2—C1 21.2 (9)
C3—C4—C7—O3 178.9 (9) O10—Tb1—N2—C1 −71.1 (7)
O6—C8—C9—N1 −171.3 (9) O9—Tb1—N2—C1 176.6 (6)
O5—C8—C9—N1 7.9 (12) N1—Tb1—N2—C1 67.8 (7)
O6—C8—C9—C10 10.5 (13) O1—Tb1—N2—C5 169.7 (9)
O5—C8—C9—C10 −170.3 (9) O5—Tb1—N2—C5 −48.3 (8)
N1—C9—C10—C11 −3.6 (15) O8i—Tb1—N2—C5 39.7 (8)
C8—C9—C10—C11 174.4 (9) O3ii—Tb1—N2—C5 −161.5 (7)
C9—C10—C11—C12 3.5 (15) O10—Tb1—N2—C5 106.2 (8)
C10—C11—C12—C13 −0.9 (14) O9—Tb1—N2—C5 −6.1 (10)
C10—C11—C12—C14 −177.4 (9) N1—Tb1—N2—C5 −115.0 (8)
C11—C12—C13—N1 −1.9 (15) O2—C6—O1—Tb1 161.3 (8)
C14—C12—C13—N1 174.5 (10) C1—C6—O1—Tb1 −19.6 (12)
C13—C12—C14—O7 178.6 (11) O5—Tb1—O1—C6 −30.8 (9)
C11—C12—C14—O7 −5.3 (15) O8i—Tb1—O1—C6 70.2 (8)
C13—C12—C14—O8 −1.4 (14) O3ii—Tb1—O1—C6 −147.4 (8)
C11—C12—C14—O8 174.7 (9) O10—Tb1—O1—C6 138.9 (8)
C10—C9—N1—C13 1.0 (14) O9—Tb1—O1—C6 −171.0 (7)
C8—C9—N1—C13 −177.2 (8) N2—Tb1—O1—C6 15.4 (8)
C10—C9—N1—Tb1 169.6 (7) N1—Tb1—O1—C6 −73.5 (8)
C8—C9—N1—Tb1 −8.6 (10) O4—C7—O3—Tb1i 12.3 (17)
C12—C13—N1—C9 1.8 (16) C4—C7—O3—Tb1i −165.4 (7)
C12—C13—N1—Tb1 −165.8 (8) O6—C8—O5—Tb1 176.0 (8)
O1—Tb1—N1—C9 147.5 (7) C9—C8—O5—Tb1 −3.1 (12)
O5—Tb1—N1—C9 5.4 (6) O1—Tb1—O5—C8 −46.5 (9)
O8i—Tb1—N1—C9 35.5 (9) O8i—Tb1—O5—C8 −164.1 (8)
O3ii—Tb1—N1—C9 −126.4 (7) O3ii—Tb1—O5—C8 51.8 (8)
O10—Tb1—N1—C9 −161.3 (6) O10—Tb1—O5—C8 157.8 (7)
O9—Tb1—N1—C9 −58.6 (7) O9—Tb1—O5—C8 117.3 (8)
N2—Tb1—N1—C9 81.4 (7) N2—Tb1—O5—C8 −89.3 (8)
O1—Tb1—N1—C13 −44.8 (8) N1—Tb1—O5—C8 −0.9 (8)
O5—Tb1—N1—C13 173.0 (9) O7—C14—O8—Tb1ii 23.9 (17)
O8i—Tb1—N1—C13 −156.8 (7) C12—C14—O8—Tb1ii −156.1 (7)

Symmetry codes: (i) −x+1/2, −y+1/2, z−1/2; (ii) −x+1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O12iii 0.85 1.98 2.801 (12) 162
O9—H91···O4ii 0.85 1.86 2.706 (10) 180
O9—H92···O4iv 0.85 1.99 2.842 (11) 180
O10—H101···O7i 0.85 1.83 2.679 (11) 179
O10—H102···O9iii 0.85 2.15 3.000 (11) 180
O11—H111···O5 0.85 2.00 2.851 (12) 180
O11—H112···O2i 0.85 1.91 2.758 (12) 180
O12—H121···O6v 0.85 2.15 3.000 (12) 180
O12—H122···O6vi 0.85 2.08 2.930 (13) 180

Symmetry codes: (iii) y+1/2, −x+1/2, −z+1/2; (ii) −x+1/2, −y+1/2, z+1/2; (iv) −y+1, x, −z; (i) −x+1/2, −y+1/2, z−1/2; (v) −x, −y, z; (vi) y, −x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2349).

References

  1. Bruker (2001). SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Huang, Y. G., Wu, B. L., Yuan, D. Q., Xu, Y. Q., Jiang, F. L. & Hong, M. C. (2007). Inorg. Chem.46, 1171–1176. [DOI] [PubMed]
  5. Li, S., Chen, Y., He, H.-M. & Ma, Y.-F. (2009). Acta Cryst E65, m411.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008824/bi2349sup1.cif

e-65-0m410-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008824/bi2349Isup2.hkl

e-65-0m410-Isup2.hkl (147.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES