Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):o903. doi: 10.1107/S1600536809010642

Bis(2,2-dinitro­prop­yl)formal

Fei Liu a, Huajun Dai a, Zhong Huang b, Yonggang Liu b, Xingming Kou a,*
PMCID: PMC2968987  PMID: 21582607

Abstract

The complete mol­ecule of the title compound [systematic name: bis(2,2-dinitro­prop­oxy)methane], C7H12N4O10, which was synthesized by the condensation reaction between 2,2-dinitro­propanol and paraformaldehyde in methyl­ene chloride, is generated by crystallographic twofold symmetry with one C atom lying on the rotation axis. In the crystal structure, mol­ecules are linked into chains running parallel to the b axis by inter­molecular C—H⋯O hydrogen-bond inter­actions, generating rings of graph-set motif R 2 2(14).

Related literature

For the applications and chemistry of the title compound, see: Garver et al. (1985); Hamilton & Wardle (1995); Adolph (1991); Hamilton & Wardle (1997). For graph-set motifs, see: Bernstein (1995).graphic file with name e-65-0o903-scheme1.jpg

Experimental

Crystal data

  • C7H12N4O10

  • M r = 312.21

  • Monoclinic, Inline graphic

  • a = 23.330 (3) Å

  • b = 6.207 (3) Å

  • c = 10.009 (6) Å

  • β = 109.60 (3)°

  • V = 1365.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 291 K

  • 0.48 × 0.44 × 0.28 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1404 measured reflections

  • 1255 independent reflections

  • 863 reflections with I > 2σ(I)

  • R int = 0.008

  • 3 standard reflections every 100 reflections intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.138

  • S = 1.09

  • 1255 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010642/rz2302sup1.cif

e-65-0o903-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010642/rz2302Isup2.hkl

e-65-0o903-Isup2.hkl (62.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.97 2.59 3.509 (3) 158
C1—H1B⋯O4ii 0.97 2.59 3.509 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

The title compound is an important energetic material used in propellant and explosive formulations (Garver et al. 1985; Hamilton & Wardle, 1995). It was also combined with liquid bis(2,2-dinitropropyl)acetal (BDNPA) to prepare the BDNPF/A energetic plasticizer (Adolph, 1991; Hamilton & Wardle, 1997). Here we report the crystal structure of the title compound.

The molecule of the title compound (Fig. 1), has crystallographically imposed two-fold symmetry. The average of N—O bond length is 1.204 (3) Å. The dihedral angle formed by the planes through the nitro group is 74.3 (2)°. The O(1)—C(2)—C(3)—N(1), O(5)—N(2)—C(3)—C(4) and O(4)—N(2)—C(3)—C(4) torsion angles are 172.59 (17), -176.2 (2) and 5.6 (3) ° respectively. In the crystal structure, the molecules are linked into chains running parallel to the b axis by intermolecular C—H···O hydrogen interactions (Table 1) generating rings of graph set motif R22(14).

Experimental

The title compound was synthesized by reacting 2,2-dinitropropanol (6.0 g) with paraformaldehyde (0.6 g) in the presence of concentrated sulfuric acid as catalyst in methylene chloride below 5°C. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a diethyl ether/mineral ether (1:6 v/v) solution.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were positioned geometrically and refined using a riding model, with C—H =0.96–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Atoms labelled with the suffix 2 are generated by the symmetry operator (1-x, y, 1/2-z).

Crystal data

C7H12N4O10 F(000) = 648
Mr = 312.21 Dx = 1.519 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 23 reflections
a = 23.330 (3) Å θ = 5.2–8.7°
b = 6.207 (3) Å µ = 0.14 mm1
c = 10.009 (6) Å T = 291 K
β = 109.60 (3)° Block, colourless
V = 1365.6 (11) Å3 0.48 × 0.44 × 0.28 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.008
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 1.9°
graphite h = −28→20
ω/2θ scans k = 0→7
1404 measured reflections l = −12→12
1255 independent reflections 3 standard reflections every 100 reflections
863 reflections with I > 2σ(I) intensity decay: 1.5%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.7176P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1255 reflections Δρmax = 0.18 e Å3
98 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.032 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.54239 (7) 0.5416 (3) 0.21472 (18) 0.0661 (6)
O2 0.68680 (8) 0.8202 (3) 0.51558 (17) 0.0706 (6)
O3 0.70016 (9) 1.0217 (3) 0.3547 (2) 0.0854 (7)
O4 0.60961 (13) 0.8225 (4) 0.0432 (2) 0.1153 (10)
O5 0.57606 (12) 1.0244 (4) 0.1735 (3) 0.1154 (9)
N1 0.67637 (8) 0.8730 (3) 0.3932 (2) 0.0538 (5)
N2 0.60412 (11) 0.8729 (4) 0.1542 (2) 0.0702 (7)
C1 0.5000 0.4161 (6) 0.2500 0.0721 (11)
H1A 0.5211 0.3241 0.3297 0.087* 0.50
H1B 0.4789 0.3241 0.1703 0.087* 0.50
C2 0.58346 (10) 0.6513 (4) 0.3320 (2) 0.0619 (7)
H2A 0.5991 0.5550 0.4124 0.074*
H2B 0.5636 0.7721 0.3596 0.074*
C3 0.63384 (9) 0.7279 (3) 0.2821 (2) 0.0470 (6)
C4 0.67114 (13) 0.5524 (5) 0.2509 (4) 0.0887 (10)
H4A 0.7000 0.6135 0.2122 0.133*
H4B 0.6450 0.4542 0.1835 0.133*
H4C 0.6924 0.4765 0.3368 0.133*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0497 (9) 0.0705 (11) 0.0702 (11) −0.0102 (8) 0.0098 (8) −0.0145 (8)
O2 0.0670 (11) 0.0859 (12) 0.0506 (10) −0.0086 (9) 0.0086 (7) −0.0062 (9)
O3 0.0912 (13) 0.0750 (13) 0.0901 (14) −0.0353 (11) 0.0306 (11) −0.0070 (10)
O4 0.179 (3) 0.1115 (18) 0.0553 (12) −0.0540 (17) 0.0396 (14) −0.0049 (12)
O5 0.1221 (19) 0.0748 (14) 0.127 (2) 0.0347 (14) 0.0122 (15) 0.0233 (13)
N1 0.0481 (10) 0.0533 (11) 0.0610 (12) −0.0045 (9) 0.0193 (9) −0.0076 (9)
N2 0.0834 (15) 0.0650 (14) 0.0552 (13) −0.0133 (12) 0.0137 (11) 0.0046 (11)
C1 0.0401 (16) 0.0499 (18) 0.114 (3) 0.000 0.0094 (17) 0.000
C2 0.0580 (13) 0.0718 (15) 0.0523 (13) −0.0174 (12) 0.0138 (10) −0.0065 (11)
C3 0.0464 (11) 0.0457 (11) 0.0454 (11) 0.0006 (9) 0.0107 (9) −0.0038 (9)
C4 0.0676 (16) 0.0807 (19) 0.108 (2) 0.0146 (14) 0.0159 (15) −0.0383 (18)

Geometric parameters (Å, °)

O1—C1 1.394 (3) C1—H1A 0.9700
O1—C2 1.416 (3) C1—H1B 0.9700
O2—N1 1.211 (2) C2—C3 1.500 (3)
O3—N1 1.205 (2) C2—H2A 0.9700
O4—N2 1.202 (3) C2—H2B 0.9700
O5—N2 1.198 (3) C3—C4 1.491 (3)
N1—C3 1.514 (3) C4—H4A 0.9600
N2—C3 1.528 (3) C4—H4B 0.9600
C1—O1i 1.394 (3) C4—H4C 0.9600
C1—O1—C2 113.52 (16) O1—C2—H2B 110.7
O3—N1—O2 124.98 (19) C3—C2—H2B 110.7
O3—N1—C3 118.63 (19) H2A—C2—H2B 108.8
O2—N1—C3 116.20 (18) C4—C3—C2 114.6 (2)
O5—N2—O4 126.0 (3) C4—C3—N1 107.70 (18)
O5—N2—C3 116.5 (2) C2—C3—N1 109.75 (17)
O4—N2—C3 117.5 (2) C4—C3—N2 112.8 (2)
O1—C1—O1i 112.1 (3) C2—C3—N2 106.23 (18)
O1—C1—H1A 109.2 N1—C3—N2 105.44 (18)
O1i—C1—H1A 109.2 C3—C4—H4A 109.5
O1—C1—H1B 109.2 C3—C4—H4B 109.5
O1i—C1—H1B 109.2 H4A—C4—H4B 109.5
H1A—C1—H1B 107.9 C3—C4—H4C 109.5
O1—C2—C3 105.36 (18) H4A—C4—H4C 109.5
O1—C2—H2A 110.7 H4B—C4—H4C 109.5
C3—C2—H2A 110.7
C2—O1—C1—O1i 70.17 (16) O3—N1—C3—N2 −31.8 (3)
C1—O1—C2—C3 165.8 (2) O2—N1—C3—N2 152.91 (19)
O1—C2—C3—C4 −66.1 (3) O5—N2—C3—C4 −176.2 (2)
O1—C2—C3—N1 172.59 (17) O4—N2—C3—C4 5.6 (3)
O1—C2—C3—N2 59.1 (2) O5—N2—C3—C2 57.6 (3)
O3—N1—C3—C4 88.8 (3) O4—N2—C3—C2 −120.7 (2)
O2—N1—C3—C4 −86.4 (3) O5—N2—C3—N1 −58.9 (3)
O3—N1—C3—C2 −145.9 (2) O4—N2—C3—N1 122.9 (2)
O2—N1—C3—C2 38.9 (3)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O4ii 0.97 2.59 3.509 (3) 158
C1—H1B···O4iii 0.97 2.59 3.509 (3) 158

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2302).

References

  1. Adolph, H. G. (1991). US Patent No. 4 997 499.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  5. Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association, Pittsburgh meeting. Abstract PA 104.
  6. Garver, L. C., Grakauskas, V. & Baum, K. (1985). J. Org. Chem. 50, 1699-1702.
  7. Hamilton, R. S. & Wardle, R. B. (1995). US Patent No. 5 449 835.
  8. Hamilton, R. S. & Wardle, R. B. (1997). US Patent No. 5 648 556.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010642/rz2302sup1.cif

e-65-0o903-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010642/rz2302Isup2.hkl

e-65-0o903-Isup2.hkl (62.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES