Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 11;65(Pt 4):o722–o723. doi: 10.1107/S1600536809008137

A second tricilinc polymorph of 6,6′-dieth­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­idyne)]diphenol

Hoong-Kun Fun a,*, Reza Kia a,, Hadi Kargar b, Arezoo Jamshidvand b
PMCID: PMC2968989  PMID: 21582458

Abstract

The title Schiff base compound, C21H26N2O4, is a second triclinic polymorph of a previously reported room-temperature structure [Jia (2009). Acta Cryst. E65, o646]. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. Inter­molecular C—H⋯O inter­actions link neighbouring mol­ecules into dimers with an R 2 2(16) ring motif. The mean planes of the two benzene rings are almost perpendicular to each other, making a dihedral angle of 88.24 (5)°. An inter­esting feature of the crystal structure is the intermolecular short C⋯O [3.1878 (13) Å] contact which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is further stabilized by inter­molecular C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.7414 (6) Å]. The structure has a stereogenic centre but the space group is centrosymmetric, so the mol­ecule exists as a racemate.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands, complexes and their applications, see: Calligaris & Randaccio (1987). For the other polymorph, see: Jia, (2009). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).graphic file with name e-65-0o722-scheme1.jpg

Experimental

Crystal data

  • C21H26N2O4

  • M r = 370.44

  • Triclinic, Inline graphic

  • a = 8.9729 (2) Å

  • b = 10.7008 (4) Å

  • c = 11.3633 (2) Å

  • α = 107.432 (1)°

  • β = 108.487 (1)°

  • γ = 95.979 (1)°

  • V = 963.03 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.56 × 0.27 × 0.25 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.952, T max = 0.978

  • 19581 measured reflections

  • 5527 independent reflections

  • 4721 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.136

  • S = 1.05

  • 5527 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008137/at2736sup1.cif

e-65-0o722-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008137/at2736Isup2.hkl

e-65-0o722-Isup2.hkl (270.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.83 2.5752 (13) 146
O2—H2⋯N2 0.84 1.88 2.6178 (13) 147
C9—H9A⋯O1i 0.99 2.49 3.4293 (14) 159
C18—H18b⋯Cg1ii 0.99 2.98 3.8340 (12) 142
C7—H7ACg2iii 0.96 2.72 3.5554 (12) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 benzene rings, respectively.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK and AJ thank PNU for partial financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/ 811012.

supplementary crystallographic information

Comment

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures (Calligaris & Randaccio, 1987). Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported earlier (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2006; Sun et al., 2004; Fun et al., 2008).

The molecule of the title compound (Fig. 1), is a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are comparable to the earlier room-temperature polymorph which was published previously (Jia, 2009). Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). Intermolecular C—H···O interactions link neighbouring molecules into dimers with a R22(16) ring motif (Bernstein et al., 1995). The mean planes of the two benzene rings are almost perpendicular to each other making a dihedral angle of 88.24 (5)°. The interesting feature of the crystal structure is the short C18···O2 [3.1878 (13) Å, symmetry code: 1 - x, 1 - y, 1 - z] contact which is shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure, is further stabilizd by intermolecular C—H···π and π-π interactions [centroid to centroid distance of 3.7414 (6) Å]. The structure has a stereogenic centre but the space group is centrosymmetric, so the molecule exists as racemate.

Experimental

The synthetic method has been described earlier (Fun et al., 2008), except that 3-ethoxy salicylaldehyde and 2-methyl-2,3-propanediamine were used as starting materials. Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.84 Å. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Dashed lines indicate intramolecular O—H···N hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed down the b-axis, showing dimer formation by R22(16) ring motif.

Crystal data

C21H26N2O4 Z = 2
Mr = 370.44 F(000) = 396
Triclinic, P1 Dx = 1.277 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.9729 (2) Å Cell parameters from 9912 reflections
b = 10.7008 (4) Å θ = 2.5–33.9°
c = 11.3633 (2) Å µ = 0.09 mm1
α = 107.432 (1)° T = 100 K
β = 108.487 (1)° Block, yellow
γ = 95.979 (1)° 0.56 × 0.27 × 0.25 mm
V = 963.03 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5527 independent reflections
Radiation source: fine-focus sealed tube 4721 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→12
Tmin = 0.952, Tmax = 0.978 k = −15→15
19581 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.2658P] where P = (Fo2 + 2Fc2)/3
5527 reflections (Δ/σ)max = 0.001
249 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.45973 (9) 0.68396 (7) 1.04387 (8) 0.02067 (16)
H1 0.3996 0.6074 0.9989 0.031*
O2 0.23678 (10) 0.61221 (7) 0.56112 (7) 0.02165 (17)
H2 0.2199 0.5617 0.6018 0.032*
O3 0.60593 (9) 0.93704 (7) 1.19014 (7) 0.02040 (16)
O4 0.30071 (10) 0.74269 (7) 0.41348 (7) 0.02157 (17)
N1 0.20357 (10) 0.51029 (9) 0.87252 (9) 0.01932 (18)
N2 0.22170 (11) 0.39204 (9) 0.61688 (9) 0.01981 (18)
C1 0.37342 (12) 0.77863 (10) 1.03131 (9) 0.01695 (19)
C2 0.45003 (12) 0.91483 (10) 1.10727 (10) 0.01745 (19)
C3 0.36454 (13) 1.01381 (10) 1.09335 (10) 0.0202 (2)
H3A 0.4165 1.1055 1.1421 0.024*
C4 0.20267 (13) 0.98033 (11) 1.00838 (11) 0.0230 (2)
H4A 0.1456 1.0492 1.0003 0.028*
C5 0.12610 (12) 0.84751 (11) 0.93638 (11) 0.0218 (2)
H5A 0.0158 0.8249 0.8801 0.026*
C6 0.21104 (12) 0.74568 (10) 0.94623 (10) 0.01782 (19)
C7 0.13033 (12) 0.60568 (10) 0.86605 (10) 0.0193 (2)
H7A 0.0211 0.5852 0.8079 0.023*
C8 0.11726 (12) 0.37212 (10) 0.78846 (10) 0.0197 (2)
H8A 0.0055 0.3712 0.7325 0.024*
C9 0.20882 (13) 0.31383 (10) 0.70025 (10) 0.0209 (2)
H9A 0.3182 0.3127 0.7564 0.025*
H9B 0.1525 0.2200 0.6432 0.025*
C10 0.25539 (12) 0.33633 (10) 0.51501 (10) 0.0195 (2)
H10A 0.2624 0.2448 0.4936 0.023*
C11 0.28343 (12) 0.40753 (10) 0.43059 (10) 0.01798 (19)
C12 0.32606 (13) 0.34087 (11) 0.32285 (10) 0.0224 (2)
H12A 0.3319 0.2492 0.3041 0.027*
C13 0.35938 (13) 0.40746 (11) 0.24449 (10) 0.0236 (2)
H13A 0.3881 0.3617 0.1721 0.028*
C14 0.35108 (12) 0.54260 (11) 0.27131 (10) 0.0211 (2)
H14A 0.3732 0.5880 0.2165 0.025*
C15 0.31054 (12) 0.61053 (10) 0.37785 (10) 0.01799 (19)
C16 0.27562 (11) 0.54322 (10) 0.45865 (9) 0.01716 (19)
C17 0.11095 (14) 0.29050 (11) 0.87711 (11) 0.0251 (2)
H17A 0.0583 0.3321 0.9376 0.038*
H17B 0.2207 0.2884 0.9286 0.038*
H17C 0.0497 0.1987 0.8220 0.038*
C18 0.68435 (13) 1.07531 (10) 1.27022 (10) 0.0207 (2)
H18A 0.6284 1.1129 1.3306 0.025*
H18B 0.6818 1.1295 1.2129 0.025*
C19 0.85652 (13) 1.07880 (11) 1.34933 (11) 0.0250 (2)
H19A 0.9117 1.1714 1.4071 0.038*
H19B 0.9119 1.0446 1.2887 0.038*
H19C 0.8576 1.0226 1.4036 0.038*
C20 0.32265 (13) 0.81235 (11) 0.32824 (11) 0.0228 (2)
H20A 0.2482 0.7626 0.2357 0.027*
H20B 0.4345 0.8213 0.3305 0.027*
C21 0.28754 (16) 0.94927 (12) 0.37877 (13) 0.0284 (2)
H21A 0.3039 1.0011 0.3242 0.043*
H21B 0.3602 0.9965 0.4710 0.043*
H21C 0.1757 0.9390 0.3739 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0213 (3) 0.0161 (3) 0.0204 (4) 0.0042 (3) 0.0039 (3) 0.0045 (3)
O2 0.0338 (4) 0.0181 (3) 0.0173 (3) 0.0072 (3) 0.0154 (3) 0.0053 (3)
O3 0.0215 (3) 0.0164 (3) 0.0181 (3) 0.0023 (3) 0.0042 (3) 0.0027 (3)
O4 0.0309 (4) 0.0184 (3) 0.0173 (3) 0.0041 (3) 0.0113 (3) 0.0066 (3)
N1 0.0206 (4) 0.0199 (4) 0.0153 (4) 0.0007 (3) 0.0065 (3) 0.0044 (3)
N2 0.0234 (4) 0.0187 (4) 0.0165 (4) 0.0036 (3) 0.0070 (3) 0.0059 (3)
C1 0.0202 (4) 0.0180 (4) 0.0139 (4) 0.0042 (3) 0.0082 (3) 0.0053 (3)
C2 0.0204 (4) 0.0183 (4) 0.0145 (4) 0.0037 (3) 0.0085 (3) 0.0049 (3)
C3 0.0257 (5) 0.0191 (4) 0.0187 (5) 0.0064 (4) 0.0124 (4) 0.0055 (4)
C4 0.0251 (5) 0.0247 (5) 0.0240 (5) 0.0110 (4) 0.0132 (4) 0.0090 (4)
C5 0.0199 (4) 0.0271 (5) 0.0209 (5) 0.0080 (4) 0.0096 (4) 0.0087 (4)
C6 0.0191 (4) 0.0202 (4) 0.0153 (4) 0.0039 (3) 0.0084 (3) 0.0057 (3)
C7 0.0190 (4) 0.0231 (5) 0.0150 (4) 0.0018 (3) 0.0070 (3) 0.0058 (4)
C8 0.0195 (4) 0.0194 (4) 0.0169 (4) 0.0010 (3) 0.0047 (3) 0.0050 (4)
C9 0.0264 (5) 0.0188 (4) 0.0178 (4) 0.0055 (4) 0.0078 (4) 0.0070 (4)
C10 0.0226 (4) 0.0166 (4) 0.0164 (4) 0.0043 (3) 0.0055 (4) 0.0038 (3)
C11 0.0194 (4) 0.0181 (4) 0.0140 (4) 0.0041 (3) 0.0052 (3) 0.0033 (3)
C12 0.0276 (5) 0.0212 (5) 0.0169 (4) 0.0079 (4) 0.0088 (4) 0.0033 (4)
C13 0.0272 (5) 0.0277 (5) 0.0155 (4) 0.0083 (4) 0.0103 (4) 0.0037 (4)
C14 0.0218 (5) 0.0262 (5) 0.0152 (4) 0.0041 (4) 0.0075 (4) 0.0066 (4)
C15 0.0184 (4) 0.0188 (4) 0.0146 (4) 0.0026 (3) 0.0052 (3) 0.0043 (3)
C16 0.0185 (4) 0.0185 (4) 0.0125 (4) 0.0036 (3) 0.0059 (3) 0.0029 (3)
C17 0.0282 (5) 0.0245 (5) 0.0222 (5) 0.0000 (4) 0.0093 (4) 0.0096 (4)
C18 0.0247 (5) 0.0160 (4) 0.0181 (4) 0.0019 (3) 0.0081 (4) 0.0021 (3)
C19 0.0253 (5) 0.0213 (5) 0.0222 (5) 0.0020 (4) 0.0049 (4) 0.0042 (4)
C20 0.0276 (5) 0.0240 (5) 0.0205 (5) 0.0041 (4) 0.0116 (4) 0.0105 (4)
C21 0.0377 (6) 0.0249 (5) 0.0295 (6) 0.0082 (4) 0.0168 (5) 0.0140 (4)

Geometric parameters (Å, °)

O1—C1 1.3514 (12) C9—H9B 0.9900
O1—H1 0.8400 C10—C11 1.4542 (15)
O2—C16 1.3484 (11) C10—H10A 0.9500
O2—H2 0.8400 C11—C16 1.4046 (13)
O3—C2 1.3643 (12) C11—C12 1.4087 (14)
O3—C18 1.4432 (12) C12—C13 1.3765 (16)
O4—C15 1.3701 (12) C12—H12A 0.9500
O4—C20 1.4338 (13) C13—C14 1.4008 (15)
N1—C7 1.2780 (14) C13—H13A 0.9500
N1—C8 1.4644 (13) C14—C15 1.3905 (14)
N2—C10 1.2777 (13) C14—H14A 0.9500
N2—C9 1.4614 (14) C15—C16 1.4112 (14)
C1—C6 1.4062 (13) C17—H17A 0.9800
C1—C2 1.4153 (13) C17—H17B 0.9800
C2—C3 1.3885 (14) C17—H17C 0.9800
C3—C4 1.4018 (15) C18—C19 1.5110 (15)
C3—H3A 0.9500 C18—H18A 0.9900
C4—C5 1.3802 (15) C18—H18B 0.9900
C4—H4A 0.9500 C19—H19A 0.9800
C5—C6 1.4046 (14) C19—H19B 0.9800
C5—H5A 0.9500 C19—H19C 0.9800
C6—C7 1.4617 (14) C20—C21 1.5107 (16)
C7—H7A 0.9500 C20—H20A 0.9900
C8—C9 1.5242 (15) C20—H20B 0.9900
C8—C17 1.5277 (15) C21—H21A 0.9800
C8—H8A 1.0000 C21—H21B 0.9800
C9—H9A 0.9900 C21—H21C 0.9800
C1—O1—H1 109.5 C13—C12—C11 120.54 (9)
C16—O2—H2 109.5 C13—C12—H12A 119.7
C2—O3—C18 116.03 (8) C11—C12—H12A 119.7
C15—O4—C20 116.95 (8) C12—C13—C14 120.13 (9)
C7—N1—C8 118.97 (9) C12—C13—H13A 119.9
C10—N2—C9 117.69 (9) C14—C13—H13A 119.9
O1—C1—C6 122.09 (9) C15—C14—C13 120.23 (10)
O1—C1—C2 118.39 (8) C15—C14—H14A 119.9
C6—C1—C2 119.52 (9) C13—C14—H14A 119.9
O3—C2—C3 125.27 (9) O4—C15—C14 124.90 (9)
O3—C2—C1 115.48 (9) O4—C15—C16 114.95 (8)
C3—C2—C1 119.25 (9) C14—C15—C16 120.15 (9)
C2—C3—C4 120.94 (9) O2—C16—C11 122.22 (9)
C2—C3—H3A 119.5 O2—C16—C15 118.56 (9)
C4—C3—H3A 119.5 C11—C16—C15 119.22 (9)
C5—C4—C3 120.10 (10) C8—C17—H17A 109.5
C5—C4—H4A 119.9 C8—C17—H17B 109.5
C3—C4—H4A 119.9 H17A—C17—H17B 109.5
C4—C5—C6 120.06 (10) C8—C17—H17C 109.5
C4—C5—H5A 120.0 H17A—C17—H17C 109.5
C6—C5—H5A 120.0 H17B—C17—H17C 109.5
C5—C6—C1 120.10 (9) O3—C18—C19 107.74 (8)
C5—C6—C7 119.59 (9) O3—C18—H18A 110.2
C1—C6—C7 120.30 (9) C19—C18—H18A 110.2
N1—C7—C6 121.39 (9) O3—C18—H18B 110.2
N1—C7—H7A 119.3 C19—C18—H18B 110.2
C6—C7—H7A 119.3 H18A—C18—H18B 108.5
N1—C8—C9 108.28 (8) C18—C19—H19A 109.5
N1—C8—C17 108.78 (8) C18—C19—H19B 109.5
C9—C8—C17 109.96 (9) H19A—C19—H19B 109.5
N1—C8—H8A 109.9 C18—C19—H19C 109.5
C9—C8—H8A 109.9 H19A—C19—H19C 109.5
C17—C8—H8A 109.9 H19B—C19—H19C 109.5
N2—C9—C8 111.50 (8) O4—C20—C21 106.98 (9)
N2—C9—H9A 109.3 O4—C20—H20A 110.3
C8—C9—H9A 109.3 C21—C20—H20A 110.3
N2—C9—H9B 109.3 O4—C20—H20B 110.3
C8—C9—H9B 109.3 C21—C20—H20B 110.3
H9A—C9—H9B 108.0 H20A—C20—H20B 108.6
N2—C10—C11 122.60 (9) C20—C21—H21A 109.5
N2—C10—H10A 118.7 C20—C21—H21B 109.5
C11—C10—H10A 118.7 H21A—C21—H21B 109.5
C16—C11—C12 119.72 (10) C20—C21—H21C 109.5
C16—C11—C10 120.87 (9) H21A—C21—H21C 109.5
C12—C11—C10 119.35 (9) H21B—C21—H21C 109.5
C18—O3—C2—C3 1.11 (15) C17—C8—C9—N2 −178.20 (8)
C18—O3—C2—C1 −178.73 (8) C9—N2—C10—C11 −175.17 (9)
O1—C1—C2—O3 −1.69 (13) N2—C10—C11—C16 0.46 (15)
C6—C1—C2—O3 177.98 (9) N2—C10—C11—C12 177.59 (10)
O1—C1—C2—C3 178.45 (9) C16—C11—C12—C13 −0.30 (15)
C6—C1—C2—C3 −1.88 (15) C10—C11—C12—C13 −177.47 (9)
O3—C2—C3—C4 −177.92 (10) C11—C12—C13—C14 −0.02 (16)
C1—C2—C3—C4 1.92 (15) C12—C13—C14—C15 0.56 (16)
C2—C3—C4—C5 −0.39 (17) C20—O4—C15—C14 4.75 (14)
C3—C4—C5—C6 −1.17 (16) C20—O4—C15—C16 −175.21 (8)
C4—C5—C6—C1 1.18 (16) C13—C14—C15—O4 179.28 (9)
C4—C5—C6—C7 −177.88 (9) C13—C14—C15—C16 −0.76 (15)
O1—C1—C6—C5 −179.99 (9) C12—C11—C16—O2 −179.44 (9)
C2—C1—C6—C5 0.35 (15) C10—C11—C16—O2 −2.33 (15)
O1—C1—C6—C7 −0.94 (15) C12—C11—C16—C15 0.10 (14)
C2—C1—C6—C7 179.41 (9) C10—C11—C16—C15 177.22 (9)
C8—N1—C7—C6 −179.15 (9) O4—C15—C16—O2 −0.05 (13)
C5—C6—C7—N1 −179.86 (10) C14—C15—C16—O2 179.99 (9)
C1—C6—C7—N1 1.08 (15) O4—C15—C16—C11 −179.61 (8)
C7—N1—C8—C9 121.02 (10) C14—C15—C16—C11 0.43 (14)
C7—N1—C8—C17 −119.50 (10) C2—O3—C18—C19 −177.40 (9)
C10—N2—C9—C8 −161.52 (9) C15—O4—C20—C21 173.58 (9)
N1—C8—C9—N2 −59.47 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.84 1.83 2.5752 (13) 146
O2—H2···N2 0.84 1.88 2.6178 (13) 147
C9—H9A···O1i 0.99 2.49 3.4293 (14) 159
C18—H18b···Cg1ii 0.9900 2.9800 3.8340 (12) 142.00
C7—H7A···Cg2iii 0.96 2.72 3.5554 (12) 176

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2736).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [DOI] [PubMed]
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895–o1896. [DOI] [PMC free article] [PubMed]
  8. Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [DOI] [PubMed]
  9. Jia, Z. (2009). Acta Cryst. E65, o646. [DOI] [PMC free article] [PubMed]
  10. Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008137/at2736sup1.cif

e-65-0o722-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008137/at2736Isup2.hkl

e-65-0o722-Isup2.hkl (270.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES