Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Nov;86(5):1524–1531. doi: 10.1172/JCI114871

Structure and distribution of an Alu-type deletion mutation in Sandhoff disease.

K Neote 1, B McInnes 1, D J Mahuran 1, R A Gravel 1
PMCID: PMC296899  PMID: 2147027

Abstract

Sandhoff disease is a recessively inherited lysosomal storage disease resulting from a deficiency of beta-hexosaminidase activity. The enzyme occurs in two major forms, beta-hexosaminidase A, composed of an alpha- and beta-subunit and beta-hexosaminidase B, composed of two beta-subunits. Both isozyme activities are deficient in Sandhoff disease, owing to mutations of the HEXB gene encoding the common beta-subunit. We have cloned and fully characterized a deletion at the HEXB gene from fibroblasts of a patient with the infantile form of Sandhoff disease. The deletion removes approximately 16 kb of DNA including the HEXB promoter, exons 1-5 and part of intron 5. It most likely arose from recombination between two Alu sequences, with the breakpoints occurring at the midpoint between the left and right arms in each case and regenerating an intact Alu element in the deletion sequence. The deletion allele accounts for 27% of the Sandhoff mutant alleles we analyzed. Two cell lines were shown to be homozygous for the deletion and both had the infantile form of the disease. Four additional patients were compound heterozygotes with other mutations, all of whom displayed a different clinical phenotype. Finally, the mutant allele was present in different ethnic backgrounds, suggesting that it may have been subject to genetic drift.

Full text

PDF
1524

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbeau A., Plasse L., Cloutier T., Paris S., Roy M. Lysosomal enzymes in ataxia: discovery of two new cases of late onset hexosaminidase A and B deficiency (adult Sandhoff disease) in French Canadians. Can J Neurol Sci. 1984 Nov;11(4 Suppl):601–606. doi: 10.1017/s0317167100035125. [DOI] [PubMed] [Google Scholar]
  2. Bearpark T. M., Stirling J. L. A difference in the specificities of human liver N-acetyl-beta-hexosaminidases A and B detected by their activities towards glycosaminoglycan oligosaccharides. Biochem J. 1978 Sep 1;173(3):997–1000. doi: 10.1042/bj1730997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bikker H., van den Berg F. M., Wolterman R. A., de Vijlder J. J., Bolhuis P. A. Demonstration of a Sandhoff disease-associated autosomal 50-kb deletion by field inversion gel electrophoresis. Hum Genet. 1989 Feb;81(3):287–288. doi: 10.1007/BF00279006. [DOI] [PubMed] [Google Scholar]
  4. Boedecker H. J., Mellman W. J., Tedesco T. A., Croce C. M. Assignment of the human gene for hexosaminidase B to chromosome 5. Exp Cell Res. 1975 Jul;93(2):468–472. doi: 10.1016/0014-4827(75)90473-5. [DOI] [PubMed] [Google Scholar]
  5. Chern C. J., Kennett R., Engel E., Mellman W. J., Croce C. M. Assignment of the structural genes for the alpha subunit of hexosaminidase A, mannosephosphate isomerase, and pyruvate kinase to the region q22-qter of human chromosome 15. Somatic Cell Genet. 1977 Nov;3(6):553–560. doi: 10.1007/BF01539065. [DOI] [PubMed] [Google Scholar]
  6. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conzelmann E., Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3979–3983. doi: 10.1073/pnas.75.8.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Der Kaloustian V. M., Khoury M. J., Hallal R., Idriss Z. H., Deeb M. E., Wakid N. W., Haddad F. S. Sandhoff disease: a prevalent form of infantile GM2 gangliosidosis in Lebanon. Am J Hum Genet. 1981 Jan;33(1):85–89. [PMC free article] [PubMed] [Google Scholar]
  9. Dreyfus J. C., Poenaru L., Svennerholm L. Absence of hexosaminidase A and B in a normal adult. N Engl J Med. 1975 Jan 9;292(2):61–63. doi: 10.1056/NEJM197501092920201. [DOI] [PubMed] [Google Scholar]
  10. Grossberger D. Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res. 1987 Aug 25;15(16):6737–6737. doi: 10.1093/nar/15.16.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hobbs H. H., Brown M. S., Goldstein J. L., Russell D. W. Deletion of exon encoding cysteine-rich repeat of low density lipoprotein receptor alters its binding specificity in a subject with familial hypercholesterolemia. J Biol Chem. 1986 Oct 5;261(28):13114–13120. [PubMed] [Google Scholar]
  12. Huang L. S., Ripps M. E., Korman S. H., Deckelbaum R. J., Breslow J. L. Hypobetalipoproteinemia due to an apolipoprotein B gene exon 21 deletion derived by Alu-Alu recombination. J Biol Chem. 1989 Jul 5;264(19):11394–11400. [PubMed] [Google Scholar]
  13. Jagadeeswaran P., Tuan D., Forget B. G., Weissman S. M. A gene deletion ending at the midpoint of a repetitive DNA sequence in one form of hereditary persistence of fetal haemoglobin. Nature. 1982 Apr 1;296(5856):469–470. doi: 10.1038/296469a0. [DOI] [PubMed] [Google Scholar]
  14. Kytzia H. J., Sandhoff K. Evidence for two different active sites on human beta-hexosaminidase A. Interaction of GM2 activator protein with beta-hexosaminidase A. J Biol Chem. 1985 Jun 25;260(12):7568–7572. [PubMed] [Google Scholar]
  15. Lehrman M. A., Russell D. W., Goldstein J. L., Brown M. S. Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J Biol Chem. 1987 Mar 5;262(7):3354–3361. [PubMed] [Google Scholar]
  16. Lowden J. A., Ives E. J., Keene D. L., Burton A. L., Skomorowski M. A., Howard F. Carrier detection in Sandhoff disease. Am J Hum Genet. 1978 Jan;30(1):38–45. [PMC free article] [PubMed] [Google Scholar]
  17. Mahuran D., Novak A., Lowden J. A. The lysosomal hexosaminidase isozymes. Isozymes Curr Top Biol Med Res. 1985;12:229–288. [PubMed] [Google Scholar]
  18. Myerowitz R., Costigan F. C. The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. 1988 Dec 15;263(35):18587–18589. [PubMed] [Google Scholar]
  19. Nakano T., Suzuki K. Genetic cause of a juvenile form of Sandhoff disease. Abnormal splicing of beta-hexosaminidase beta chain gene transcript due to a point mutation within intron 12. J Biol Chem. 1989 Mar 25;264(9):5155–5158. [PubMed] [Google Scholar]
  20. Neote K., Bapat B., Dumbrille-Ross A., Troxel C., Schuster S. M., Mahuran D. J., Gravel R. A. Characterization of the human HEXB gene encoding lysosomal beta-hexosaminidase. Genomics. 1988 Nov;3(4):279–286. doi: 10.1016/0888-7543(88)90116-4. [DOI] [PubMed] [Google Scholar]
  21. O'Dowd B. F., Klavins M. H., Willard H. F., Gravel R., Lowden J. A., Mahuran D. J. Molecular heterogeneity in the infantile and juvenile forms of Sandhoff disease (O-variant GM2 gangliosidosis). J Biol Chem. 1986 Sep 25;261(27):12680–12685. [PubMed] [Google Scholar]
  22. O'Dowd B. F., Neote K., Munroe D. L., Gravel R. A., Mahuran D., Willard H. F. PstI RFLP in the human hexosaminidase (HEXB) gene on chromosome 5. Nucleic Acids Res. 1987 Apr 10;15(7):3194–3194. doi: 10.1093/nar/15.7.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okada S., O'Brien J. S. Tay-Sachs disease: generalized absence of a beta-D-N-acetylhexosaminidase component. Science. 1969 Aug 15;165(3894):698–700. doi: 10.1126/science.165.3894.698. [DOI] [PubMed] [Google Scholar]
  24. Oonk J. G., van der Helm H. J., Martin J. J. Spinocerebellar degeneration: hexosaminidase A and B deficiency in two adult sisters. Neurology. 1979 Mar;29(3):380–384. doi: 10.1212/wnl.29.3.380. [DOI] [PubMed] [Google Scholar]
  25. Ottolenghi S., Giglioni B. The deletion in a type of delta 0-beta 0-thalassaemia begins in an inverted AluI repeat. Nature. 1982 Dec 23;300(5894):770–771. doi: 10.1038/300770a0. [DOI] [PubMed] [Google Scholar]
  26. Rattazzi M. C., Brown J. A., Davidson R. G., Shows T. B. Studies on complementation of beta hexosaminidase deficiency in human GM2 gangliosidosis. Am J Hum Genet. 1976 Mar;28(2):143–154. [PMC free article] [PubMed] [Google Scholar]
  27. Rubin M., Karpati G., Wolfe L. S., Carpenter S., Klavins M. H., Mahuran D. J. Adult onset motor neuronopathy in the juvenile type of hexosaminidase A and B deficiency. J Neurol Sci. 1988 Oct;87(1):103–119. doi: 10.1016/0022-510x(88)90058-5. [DOI] [PubMed] [Google Scholar]
  28. Sandhoff K., Andreae U., Jatzkewitz H. Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs. Pathol Eur. 1968;3(2):278–285. [PubMed] [Google Scholar]
  29. Schmid C. W., Jelinek W. R. The Alu family of dispersed repetitive sequences. Science. 1982 Jun 4;216(4550):1065–1070. doi: 10.1126/science.6281889. [DOI] [PubMed] [Google Scholar]
  30. Tsui F., Mahuran D. J., Lowden J. A., Mosmann T., Gravel R. A. Characterization of polypeptides serologically and structurally related to hexosaminidase in cultured fibroblasts. J Clin Invest. 1983 Apr;71(4):965–973. doi: 10.1172/JCI110851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Willard H. F., Smith K. D., Sutherland J. Isolation and characterization of a major tandem repeat family from the human X chromosome. Nucleic Acids Res. 1983 Apr 11;11(7):2017–2033. doi: 10.1093/nar/11.7.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wood S. Juvenile Sandhoff Disease: complementation tests with Sandhoff and Tay-Sachs disease using polyethylene glycol-induced cell fusion. Hum Genet. 1978 Apr 24;41(3):325–329. doi: 10.1007/BF00284766. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES