Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 31;65(Pt 4):o927. doi: 10.1107/S1600536809011222

8-(Biphenyl-2-yl)-7,9-diphenyl-8H-cyclo­penta­[a]acenaphthylen-8-ol

Peter G Jones a,*, Marc Debeaux b, Henning Hopf c, Wolfgang Kowalsky b, Hans-Hermann Johannes b
PMCID: PMC2968992  PMID: 21582628

Abstract

In the title compound, C39H26O, the cyclo­penta­[a]acenaphthyl­ene skeleton displays the expected distortions, with formal sp 2 bond angles as high as C—C—C = 142.50 (10)°. The OH group forms inter­molecular hydrogen bonds via x-axis translation to the centroid (Cg) of the pendant phenyl ring of the biphenyl system, with H⋯Cg = 2.41 Å and O—H⋯Cg = 153°.

Related literature

For related literature, see: Saragi et al. (2007); Velusamy et al. (2007).graphic file with name e-65-0o927-scheme1.jpg

Experimental

Crystal data

  • C39H26O

  • M r = 510.60

  • Monoclinic, Inline graphic

  • a = 7.3837 (4) Å

  • b = 18.4001 (12) Å

  • c = 19.2505 (12) Å

  • β = 97.549 (3)°

  • V = 2592.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 103 K

  • 0.35 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.893, T max = 0.985

  • 53233 measured reflections

  • 7857 independent reflections

  • 6335 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.125

  • S = 1.02

  • 7857 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011222/bt2916sup1.cif

e-65-0o927-sup1.cif (29.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011222/bt2916Isup2.hkl

e-65-0o927-Isup2.hkl (384.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Bundesministerium für Bildung und Forschung (BMBF 01 BD 0687) for financial support.

supplementary crystallographic information

Comment

The title compound (I) is a derivative of 7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-one, an interesting starting compound for optoelectronic materials (Velusamy et al., 2007). Spiro compounds with orthogonally fixed aromatic moieties are known to form stable molecular glasses, an important prerequisite of materials for optoelectronic applications (Saragi et al., 2007). We have synthesized the title compound by addition of biphenyl-2-yl lithium (III) to the ketone II with a view to generating a corresponding spiro compound, which could combine both attractive electronic properties and amorphous stability, by further cyclocondensation.

The molecule of I is shown in Fig. 1. The cyclopenta[a]acenaphthylene skeleton displays the expected distortions, with formally sp2 angles as high as C7—C6B—C6A 142.50 (10)°. The 15 atoms of this skeleton are reasonably coplanar (r.m.s.d. 0.09 Å) but a better description is of the fused cyclopentadiene (r.m.s.d. 0.030 Å) subtending an interplanar angle of 10.52 (1)° with the ten atoms of the naphthalenoid moiety plus the atoms C6B and C9A (r.m.s.d. 0.037 Å). With the phenyl rings C10–15, C16–21, C22–27 it subtends angles of 33.50 (4), 30.51 (4) and 83.89 (4)° respectively. The biphenyl interplanar angle is 76.93 (4)°.

The OH group does not form intermolecular hydrogen bonds with its counterparts in neighbouring molecules, presumably for steric reasons. Instead, the acceptor is the centroid of ring C28–33, with H01···Cent 2.41 Å, O—H01···Cent 153°, operator x - 1,y,z.

Experimental

2-Bromobiphenyl (900 mg, 3.86 mmol) in dry THF (10 ml) was treated with a 1.6 M solution of n-butyl lithium in n-hexane (2.81 ml, 4.50 mmol) at -80 °C. The mixture was stirred for 1 h at -80 °C and added to a suspension of 7,9-diphenyl-8H-cyclopenta[a]acenaphthylen-8-one (1.38 g, 3.86 mmol) in dry THF (25 ml). After 4 h of stirring under reflux, a saturated aqueous solution of ammonium chloride (50 ml) was added. Extraction with dichloromethane (3 × 50 ml), drying (MgSO4) and concentration afforded the crude product, which was purified by flash chromatography on silica gel (CH2Cl2/n-hexane, 1:1; Rf = 0.32). The title compound was obtained as a yellow microcrystalline solid (597 mg, 30%), mp 244 °C. Elemental analysis: calculated for C39H26O: C 91.73, H 5.13%; found: C 91.79, 5.07%. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3) δ = 8.29 (dd, J = 8.1, 1.3, 1 H), 7.75 (d, J = 7.1, 2 H), 7.68–7.62 (m, 6 H), 7.48–7.39 (m, 3 H), 7.37–7.24 (m, 7 H), 6.92 (dd, J = 7.5, 1.4, 1 H), 6.83 (dd, J = 7.9, 1.5, 2 H), 6.47 (dd, J = 7.7, 7.7, 2 H), 6.27–6.21 (m, 1 H), 2.50 p.p.m. (s, 1 H, OH); 13C NMR (101 MHz, CDCl3) δ = 145.2 (s), 144.1 (s), 141.0 (s), 140.5 (s), 140.4 (s), 137.1 (s), 134.4 (s), 132.4 (s), 131.6 (s), 131.4 (d), 128.8 (d), 128.2 (d), 128.1 (d), 127.7 (d), 127.5 (d), 127.4 (d), 127.4 (d), 127.1 (d), 126.0 (d), 125.6 (d), 125.5 (d), 119.2 (d), 96.3 p.p.m. (s).

Refinement

The hydroxyl hydrogen was identified in a difference synthesis and refined freely. Other hydrogen atoms were included using a riding model with C—H 0.95 Å; U(H) values were fixed at 1.2 × Ueq(C) of the parent C atom.

Figures

Fig. 1.

Fig. 1.

The formula unit of the title compound in the crystal. Ellipsoids represent 50% probability levels. Only the first two atoms of phenyl rings are numbered; other atoms follow in sequence.

Fig. 2.

Fig. 2.

Preparation of the title compound.

Crystal data

C39H26O F(000) = 1072
Mr = 510.60 Dx = 1.308 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.3837 (4) Å Cell parameters from 9892 reflections
b = 18.4001 (12) Å θ = 2.4–31.4°
c = 19.2505 (12) Å µ = 0.08 mm1
β = 97.549 (3)° T = 103 K
V = 2592.7 (3) Å3 Prism, yellow
Z = 4 0.35 × 0.20 × 0.20 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 7857 independent reflections
Radiation source: fine-focus sealed tube 6335 reflections with I > 2σ(I)
graphite Rint = 0.036
φ and ω scans θmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→9
Tmin = 0.893, Tmax = 0.985 k = −26→26
53233 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.9032P] where P = (Fo2 + 2Fc2)/3
7857 reflections (Δ/σ)max = 0.001
365 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)7.3583 (0.0005) x + 0.7119 (0.0054) y - 3.9201 (0.0047) z = 0.2623 (0.0032)* -0.0009 (0.0010) C1 * -0.0525 (0.0012) C2 * -0.0232 (0.0012) C3 * 0.0267 (0.0012) C3A * 0.0072 (0.0012) C4 * -0.0118 (0.0011) C5 * -0.0169 (0.0010) C6 * 0.0149 (0.0009) C6A * 0.0575 (0.0010) C6A1 * -0.0612 (0.0008) C6B * 0.0602 (0.0010) C9BRms deviation of fitted atoms = 0.03747.3441 (0.0006) x - 1.4269 (0.0094) y - 1.2091 (0.0098) z = 1.2752 (0.0064)Angle to previous plane (with approximate e.s.d.) = 10.52 (0.01)* 0.0010 (0.0006) C6B * -0.0289 (0.0006) C9A * 0.0416 (0.0006) C9 * -0.0370 (0.0006) C8 * 0.0233 (0.0006) C7Rms deviation of fitted atoms = 0.02995.9686 (0.0021) x - 10.0295 (0.0075) y + 2.1998 (0.0091) z = 1.0584 (0.0079)Angle to previous plane (with approximate e.s.d.) = 30.51 (0.04)* -0.0149 (0.0007) C16 * 0.0092 (0.0008) C17 * 0.0028 (0.0009) C18 * -0.0090 (0.0009) C19 * 0.0030 (0.0008) C20 * 0.0090 (0.0008) C21Rms deviation of fitted atoms = 0.0090===========================================================================5.7246 (0.0022) x - 6.2243 (0.0078) y + 8.2177 (0.0079) z = 5.2956 (0.0036)Angle to previous plane (with approximate e.s.d.) = 21.61 (0.05)* 0.0022 (0.0007) C10 * -0.0022 (0.0008) C11 * -0.0003 (0.0008) C12 * 0.0027 (0.0008) C13 * -0.0026 (0.0008) C14 * 0.0002 (0.0008) C15Rms deviation of fitted atoms = 0.00207.3441 (0.0006) x - 1.4269 (0.0094) y - 1.2091 (0.0098) z = 1.2752 (0.0064)Angle to previous plane (with approximate e.s.d.) = 33.50 (0.04)* 0.0010 (0.0006) C6B * -0.0289 (0.0006) C9A * 0.0416 (0.0006) C9 * -0.0370 (0.0006) C8 * 0.0233 (0.0006) C7Rms deviation of fitted atoms = 0.0299- 1.0281 (0.0031) x + 7.1737 (0.0070) y + 17.7236 (0.0033) z = 12.7054 (0.0026)Angle to previous plane (with approximate e.s.d.) = 83.89 (0.04)* -0.0019 (0.0007) C22 * 0.0011 (0.0007) C23 * 0.0018 (0.0007) C24 * -0.0038 (0.0007) C25 * 0.0030 (0.0007) C26 * -0.0001 (0.0007) C27Rms deviation of fitted atoms = 0.00236.5435 (0.0016) x - 8.3888 (0.0073) y - 0.6702 (0.0088) z = 2.5647 (0.0063)Angle to previous plane (with approximate e.s.d.) = 76.93 (0.04)* -0.0148 (0.0007) C28 * 0.0087 (0.0007) C29 * 0.0045 (0.0008) C30 * -0.0117 (0.0008) C31 * 0.0055 (0.0008) C32 * 0.0078 (0.0008) C33Rms deviation of fitted atoms = 0.0095
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O 0.13493 (10) 0.15448 (4) 0.67183 (4) 0.01423 (15)
H01 0.053 (3) 0.1864 (10) 0.6540 (9) 0.036 (5)*
C1 0.24115 (17) 0.31692 (6) 0.44354 (6) 0.0200 (2)
H1 0.2319 0.2716 0.4197 0.024*
C2 0.2079 (2) 0.38281 (7) 0.40623 (6) 0.0265 (3)
H2 0.1741 0.3809 0.3569 0.032*
C3 0.2226 (2) 0.44958 (7) 0.43856 (7) 0.0282 (3)
H3 0.2022 0.4926 0.4113 0.034*
C3A 0.26827 (18) 0.45465 (6) 0.51240 (6) 0.0211 (2)
C4 0.2812 (2) 0.51906 (6) 0.55328 (7) 0.0267 (3)
H4 0.2648 0.5651 0.5309 0.032*
C5 0.31712 (18) 0.51523 (6) 0.62491 (7) 0.0233 (2)
H5 0.3255 0.5591 0.6511 0.028*
C6 0.34231 (15) 0.44817 (6) 0.66134 (6) 0.0168 (2)
H6 0.3655 0.4473 0.7111 0.020*
C6A 0.33272 (14) 0.38416 (5) 0.62358 (5) 0.01327 (19)
C6B 0.33853 (14) 0.30597 (5) 0.63970 (5) 0.01192 (18)
C6A1 0.29829 (15) 0.38892 (6) 0.54897 (5) 0.0151 (2)
C7 0.34110 (14) 0.25807 (5) 0.69336 (5) 0.01173 (18)
C8 0.31266 (13) 0.18120 (5) 0.66124 (5) 0.01113 (18)
C9 0.31279 (14) 0.19389 (5) 0.58200 (5) 0.01183 (18)
C9A 0.31558 (14) 0.26635 (5) 0.57176 (5) 0.01246 (18)
C9B 0.28743 (15) 0.31995 (6) 0.51537 (5) 0.01469 (19)
C10 0.31073 (14) 0.13514 (6) 0.53058 (5) 0.01317 (19)
C11 0.40373 (15) 0.14418 (6) 0.47211 (5) 0.0160 (2)
H11 0.4617 0.1892 0.4653 0.019*
C12 0.41254 (16) 0.08846 (7) 0.42400 (6) 0.0201 (2)
H12 0.4764 0.0956 0.3848 0.024*
C13 0.32818 (17) 0.02248 (7) 0.43315 (6) 0.0217 (2)
H13 0.3346 −0.0158 0.4004 0.026*
C14 0.23426 (16) 0.01256 (6) 0.49042 (6) 0.0197 (2)
H14 0.1755 −0.0325 0.4965 0.024*
C15 0.22550 (15) 0.06821 (6) 0.53901 (6) 0.0164 (2)
H15 0.1614 0.0607 0.5781 0.020*
C16 0.34884 (14) 0.27215 (6) 0.76866 (5) 0.01294 (19)
C17 0.26048 (16) 0.22669 (6) 0.81206 (6) 0.0170 (2)
H17 0.1996 0.1842 0.7931 0.020*
C18 0.26098 (17) 0.24311 (7) 0.88270 (6) 0.0218 (2)
H18 0.1990 0.2121 0.9113 0.026*
C19 0.35097 (18) 0.30421 (7) 0.91169 (6) 0.0230 (2)
H19 0.3495 0.3155 0.9598 0.028*
C20 0.44350 (16) 0.34891 (6) 0.86992 (6) 0.0201 (2)
H20 0.5069 0.3905 0.8896 0.024*
C21 0.44323 (15) 0.33267 (6) 0.79935 (6) 0.0158 (2)
H21 0.5082 0.3632 0.7714 0.019*
C22 0.45086 (14) 0.12448 (5) 0.69252 (5) 0.01134 (18)
C23 0.64062 (14) 0.13629 (5) 0.69892 (5) 0.01170 (18)
C24 0.75989 (14) 0.08196 (6) 0.72787 (5) 0.01409 (19)
H24 0.8879 0.0901 0.7323 0.017*
C25 0.69485 (15) 0.01641 (6) 0.75031 (6) 0.0156 (2)
H25 0.7775 −0.0202 0.7694 0.019*
C26 0.50835 (15) 0.00505 (6) 0.74447 (6) 0.0159 (2)
H26 0.4624 −0.0394 0.7602 0.019*
C27 0.38801 (14) 0.05834 (6) 0.71575 (5) 0.01441 (19)
H27 0.2602 0.0496 0.7118 0.017*
C28 0.72295 (13) 0.20575 (5) 0.67853 (5) 0.01229 (18)
C29 0.74001 (14) 0.22183 (6) 0.60887 (6) 0.0151 (2)
H29 0.6963 0.1884 0.5729 0.018*
C30 0.82100 (15) 0.28686 (6) 0.59174 (6) 0.0185 (2)
H30 0.8314 0.2978 0.5442 0.022*
C31 0.88645 (15) 0.33565 (6) 0.64425 (6) 0.0198 (2)
H31 0.9391 0.3804 0.6326 0.024*
C32 0.87449 (16) 0.31872 (6) 0.71380 (6) 0.0190 (2)
H32 0.9217 0.3515 0.7498 0.023*
C33 0.79400 (15) 0.25429 (6) 0.73091 (6) 0.0153 (2)
H33 0.7871 0.2430 0.7787 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O 0.0097 (3) 0.0152 (3) 0.0180 (4) −0.0002 (3) 0.0025 (3) 0.0021 (3)
C1 0.0290 (6) 0.0174 (5) 0.0134 (5) 0.0004 (4) 0.0021 (4) 0.0017 (4)
C2 0.0419 (8) 0.0229 (6) 0.0145 (5) 0.0025 (5) 0.0021 (5) 0.0054 (4)
C3 0.0460 (8) 0.0190 (6) 0.0194 (6) 0.0038 (5) 0.0039 (5) 0.0081 (4)
C3A 0.0292 (6) 0.0155 (5) 0.0193 (5) 0.0018 (4) 0.0058 (4) 0.0040 (4)
C4 0.0419 (8) 0.0121 (5) 0.0268 (6) 0.0029 (5) 0.0073 (5) 0.0039 (4)
C5 0.0329 (6) 0.0123 (5) 0.0256 (6) 0.0011 (4) 0.0065 (5) −0.0016 (4)
C6 0.0192 (5) 0.0139 (5) 0.0178 (5) 0.0007 (4) 0.0042 (4) −0.0016 (4)
C6A 0.0133 (4) 0.0114 (4) 0.0154 (4) 0.0001 (3) 0.0030 (3) 0.0003 (3)
C6B 0.0118 (4) 0.0114 (4) 0.0127 (4) 0.0008 (3) 0.0023 (3) −0.0009 (3)
C6A1 0.0172 (5) 0.0129 (5) 0.0154 (5) 0.0003 (4) 0.0032 (4) 0.0016 (4)
C7 0.0108 (4) 0.0119 (4) 0.0125 (4) 0.0011 (3) 0.0018 (3) −0.0011 (3)
C8 0.0107 (4) 0.0112 (4) 0.0117 (4) 0.0001 (3) 0.0022 (3) 0.0000 (3)
C9 0.0116 (4) 0.0127 (4) 0.0110 (4) 0.0003 (3) 0.0010 (3) −0.0005 (3)
C9A 0.0133 (4) 0.0123 (4) 0.0120 (4) 0.0001 (3) 0.0024 (3) −0.0004 (3)
C9B 0.0173 (5) 0.0129 (4) 0.0141 (5) 0.0002 (4) 0.0029 (4) 0.0013 (4)
C10 0.0134 (4) 0.0131 (4) 0.0122 (4) 0.0014 (3) −0.0013 (3) −0.0015 (3)
C11 0.0173 (5) 0.0162 (5) 0.0141 (4) 0.0014 (4) 0.0011 (4) −0.0015 (4)
C12 0.0226 (5) 0.0234 (6) 0.0139 (5) 0.0043 (4) 0.0015 (4) −0.0040 (4)
C13 0.0257 (6) 0.0197 (5) 0.0182 (5) 0.0051 (4) −0.0031 (4) −0.0073 (4)
C14 0.0222 (5) 0.0138 (5) 0.0215 (5) −0.0002 (4) −0.0036 (4) −0.0039 (4)
C15 0.0172 (5) 0.0153 (5) 0.0160 (5) −0.0009 (4) −0.0002 (4) −0.0013 (4)
C16 0.0130 (4) 0.0132 (4) 0.0127 (4) 0.0033 (3) 0.0020 (3) −0.0003 (3)
C17 0.0202 (5) 0.0164 (5) 0.0145 (5) −0.0002 (4) 0.0031 (4) 0.0011 (4)
C18 0.0265 (6) 0.0255 (6) 0.0146 (5) −0.0008 (5) 0.0067 (4) 0.0016 (4)
C19 0.0272 (6) 0.0286 (6) 0.0135 (5) 0.0018 (5) 0.0044 (4) −0.0039 (4)
C20 0.0215 (5) 0.0213 (5) 0.0169 (5) −0.0004 (4) 0.0007 (4) −0.0058 (4)
C21 0.0163 (5) 0.0161 (5) 0.0149 (5) 0.0001 (4) 0.0019 (4) −0.0018 (4)
C22 0.0127 (4) 0.0109 (4) 0.0106 (4) 0.0008 (3) 0.0019 (3) −0.0006 (3)
C23 0.0134 (4) 0.0114 (4) 0.0105 (4) 0.0001 (3) 0.0022 (3) −0.0010 (3)
C24 0.0129 (4) 0.0148 (5) 0.0144 (4) 0.0010 (4) 0.0011 (3) −0.0010 (4)
C25 0.0181 (5) 0.0136 (5) 0.0151 (5) 0.0039 (4) 0.0021 (4) 0.0010 (4)
C26 0.0195 (5) 0.0112 (4) 0.0178 (5) 0.0007 (4) 0.0051 (4) 0.0020 (4)
C27 0.0138 (5) 0.0133 (4) 0.0165 (5) −0.0010 (4) 0.0035 (4) 0.0008 (4)
C28 0.0096 (4) 0.0118 (4) 0.0157 (4) 0.0008 (3) 0.0021 (3) 0.0008 (3)
C29 0.0133 (5) 0.0169 (5) 0.0147 (5) −0.0003 (4) 0.0011 (4) 0.0003 (4)
C30 0.0160 (5) 0.0204 (5) 0.0197 (5) −0.0007 (4) 0.0038 (4) 0.0054 (4)
C31 0.0154 (5) 0.0153 (5) 0.0291 (6) −0.0018 (4) 0.0042 (4) 0.0037 (4)
C32 0.0172 (5) 0.0149 (5) 0.0249 (5) −0.0022 (4) 0.0025 (4) −0.0035 (4)
C33 0.0148 (5) 0.0147 (5) 0.0163 (5) −0.0005 (4) 0.0021 (4) −0.0014 (4)

Geometric parameters (Å, °)

O—C8 1.4408 (12) C14—C15 1.3940 (15)
O—H01 0.879 (19) C14—H14 0.9500
C1—C9B 1.3813 (15) C15—H15 0.9500
C1—C2 1.4140 (16) C16—C17 1.4024 (15)
C1—H1 0.9500 C16—C21 1.4024 (15)
C2—C3 1.3750 (18) C17—C18 1.3925 (15)
C2—H2 0.9500 C17—H17 0.9500
C3—C3A 1.4201 (17) C18—C19 1.3855 (18)
C3—H3 0.9500 C18—H18 0.9500
C3A—C6A1 1.4023 (15) C19—C20 1.3908 (17)
C3A—C4 1.4188 (17) C19—H19 0.9500
C4—C5 1.3714 (18) C20—C21 1.3907 (15)
C4—H4 0.9500 C20—H20 0.9500
C5—C6 1.4194 (16) C21—H21 0.9500
C5—H5 0.9500 C22—C27 1.3967 (14)
C6—C6A 1.3810 (14) C22—C23 1.4073 (14)
C6—H6 0.9500 C23—C24 1.3988 (14)
C6A—C6A1 1.4280 (14) C23—C28 1.4898 (14)
C6A—C6B 1.4711 (14) C24—C25 1.3879 (15)
C6B—C7 1.3561 (14) C24—H24 0.9500
C6B—C9A 1.4876 (14) C25—C26 1.3827 (15)
C6A1—C9B 1.4219 (14) C25—H25 0.9500
C7—C16 1.4663 (14) C26—C27 1.3885 (14)
C7—C8 1.5470 (14) C26—H26 0.9500
C8—C22 1.5269 (14) C27—H27 0.9500
C8—C9 1.5433 (14) C28—C29 1.3950 (14)
C9—C9A 1.3485 (14) C28—C33 1.3967 (14)
C9—C10 1.4644 (14) C29—C30 1.3964 (15)
C9A—C9B 1.4611 (14) C29—H29 0.9500
C10—C15 1.4021 (15) C30—C31 1.3903 (17)
C10—C11 1.4032 (15) C30—H30 0.9500
C11—C12 1.3889 (15) C31—C32 1.3886 (17)
C11—H11 0.9500 C31—H31 0.9500
C12—C13 1.3862 (18) C32—C33 1.3852 (15)
C12—H12 0.9500 C32—H32 0.9500
C13—C14 1.3896 (18) C33—H33 0.9500
C13—H13 0.9500
C8—O—H01 107.9 (12) C13—C14—C15 120.52 (11)
C9B—C1—C2 118.52 (11) C13—C14—H14 119.7
C9B—C1—H1 120.7 C15—C14—H14 119.7
C2—C1—H1 120.7 C14—C15—C10 120.43 (10)
C3—C2—C1 122.55 (11) C14—C15—H15 119.8
C3—C2—H2 118.7 C10—C15—H15 119.8
C1—C2—H2 118.7 C17—C16—C21 117.85 (10)
C2—C3—C3A 120.40 (11) C17—C16—C7 121.52 (9)
C2—C3—H3 119.8 C21—C16—C7 120.63 (9)
C3A—C3—H3 119.8 C18—C17—C16 120.70 (10)
C6A1—C3A—C4 116.57 (10) C18—C17—H17 119.7
C6A1—C3A—C3 116.54 (11) C16—C17—H17 119.7
C4—C3A—C3 126.86 (11) C19—C18—C17 120.60 (11)
C5—C4—C3A 120.32 (11) C19—C18—H18 119.7
C5—C4—H4 119.8 C17—C18—H18 119.7
C3A—C4—H4 119.8 C18—C19—C20 119.54 (10)
C4—C5—C6 122.47 (11) C18—C19—H19 120.2
C4—C5—H5 118.8 C20—C19—H19 120.2
C6—C5—H5 118.8 C21—C20—C19 119.99 (11)
C6A—C6—C5 119.14 (10) C21—C20—H20 120.0
C6A—C6—H6 120.4 C19—C20—H20 120.0
C5—C6—H6 120.4 C20—C21—C16 121.26 (10)
C6—C6A—C6A1 117.85 (9) C20—C21—H21 119.4
C6—C6A—C6B 136.45 (10) C16—C21—H21 119.4
C6A1—C6A—C6B 105.59 (9) C27—C22—C23 118.39 (9)
C7—C6B—C6A 142.50 (10) C27—C22—C8 119.27 (9)
C7—C6B—C9A 109.86 (9) C23—C22—C8 122.35 (9)
C6A—C6B—C9A 107.27 (8) C24—C23—C22 119.47 (9)
C3A—C6A1—C9B 123.07 (10) C24—C23—C28 117.43 (9)
C3A—C6A1—C6A 123.60 (10) C22—C23—C28 123.06 (9)
C9B—C6A1—C6A 113.25 (9) C25—C24—C23 121.30 (10)
C6B—C7—C16 129.27 (9) C25—C24—H24 119.3
C6B—C7—C8 107.59 (8) C23—C24—H24 119.3
C16—C7—C8 122.84 (9) C26—C25—C24 119.20 (10)
O—C8—C22 106.55 (8) C26—C25—H25 120.4
O—C8—C9 108.08 (8) C24—C25—H25 120.4
C22—C8—C9 113.96 (8) C25—C26—C27 120.26 (10)
O—C8—C7 109.50 (8) C25—C26—H26 119.9
C22—C8—C7 114.75 (8) C27—C26—H26 119.9
C9—C8—C7 103.83 (8) C26—C27—C22 121.38 (10)
C9A—C9—C10 129.05 (9) C26—C27—H27 119.3
C9A—C9—C8 107.22 (8) C22—C27—H27 119.3
C10—C9—C8 123.72 (9) C29—C28—C33 119.05 (10)
C9—C9A—C9B 140.59 (10) C29—C28—C23 121.78 (9)
C9—C9A—C6B 110.99 (9) C33—C28—C23 119.08 (9)
C9B—C9A—C6B 108.13 (9) C28—C29—C30 120.29 (10)
C1—C9B—C6A1 118.89 (10) C28—C29—H29 119.9
C1—C9B—C9A 135.14 (10) C30—C29—H29 119.9
C6A1—C9B—C9A 105.69 (9) C31—C30—C29 120.02 (10)
C15—C10—C11 118.12 (9) C31—C30—H30 120.0
C15—C10—C9 122.35 (9) C29—C30—H30 120.0
C11—C10—C9 119.47 (9) C32—C31—C30 119.75 (10)
C12—C11—C10 121.20 (10) C32—C31—H31 120.1
C12—C11—H11 119.4 C30—C31—H31 120.1
C10—C11—H11 119.4 C33—C32—C31 120.32 (10)
C13—C12—C11 120.04 (11) C33—C32—H32 119.8
C13—C12—H12 120.0 C31—C32—H32 119.8
C11—C12—H12 120.0 C32—C33—C28 120.52 (10)
C12—C13—C14 119.69 (10) C32—C33—H33 119.7
C12—C13—H13 120.2 C28—C33—H33 119.7
C14—C13—H13 120.2
C9B—C1—C2—C3 1.0 (2) C6B—C9A—C9B—C6A1 1.46 (11)
C1—C2—C3—C3A −1.6 (2) C9A—C9—C10—C15 −149.29 (11)
C2—C3—C3A—C6A1 0.6 (2) C8—C9—C10—C15 30.91 (15)
C2—C3—C3A—C4 −177.27 (14) C9A—C9—C10—C11 33.63 (16)
C6A1—C3A—C4—C5 −1.47 (19) C8—C9—C10—C11 −146.17 (10)
C3—C3A—C4—C5 176.43 (14) C15—C10—C11—C12 −0.39 (16)
C3A—C4—C5—C6 −0.2 (2) C9—C10—C11—C12 176.81 (10)
C4—C5—C6—C6A 0.82 (19) C10—C11—C12—C13 0.16 (17)
C5—C6—C6A—C6A1 0.26 (16) C11—C12—C13—C14 0.30 (17)
C5—C6—C6A—C6B −175.27 (12) C12—C13—C14—C15 −0.52 (17)
C6—C6A—C6B—C7 6.8 (2) C13—C14—C15—C10 0.29 (17)
C6A1—C6A—C6B—C7 −169.06 (14) C11—C10—C15—C14 0.17 (16)
C6—C6A—C6B—C9A 178.67 (12) C9—C10—C15—C14 −176.95 (10)
C6A1—C6A—C6B—C9A 2.78 (11) C6B—C7—C16—C17 146.37 (11)
C4—C3A—C6A1—C9B 179.06 (11) C8—C7—C16—C17 −26.63 (15)
C3—C3A—C6A1—C9B 0.94 (18) C6B—C7—C16—C21 −32.59 (16)
C4—C3A—C6A1—C6A 2.63 (18) C8—C7—C16—C21 154.40 (10)
C3—C3A—C6A1—C6A −175.49 (11) C21—C16—C17—C18 2.52 (16)
C6—C6A—C6A1—C3A −2.05 (16) C7—C16—C17—C18 −176.48 (10)
C6B—C6A—C6A1—C3A 174.75 (11) C16—C17—C18—C19 −0.89 (18)
C6—C6A—C6A1—C9B −178.79 (10) C17—C18—C19—C20 −0.83 (19)
C6B—C6A—C6A1—C9B −1.99 (12) C18—C19—C20—C21 0.85 (19)
C6A—C6B—C7—C16 −3.9 (2) C19—C20—C21—C16 0.86 (18)
C9A—C6B—C7—C16 −175.60 (10) C17—C16—C21—C20 −2.51 (16)
C6A—C6B—C7—C8 169.94 (13) C7—C16—C21—C20 176.49 (10)
C9A—C6B—C7—C8 −1.76 (11) O—C8—C22—C27 7.52 (12)
C6B—C7—C8—O −109.97 (9) C9—C8—C22—C27 −111.57 (10)
C16—C7—C8—O 64.36 (12) C7—C8—C22—C27 128.89 (10)
C6B—C7—C8—C22 130.30 (9) O—C8—C22—C23 −172.49 (8)
C16—C7—C8—C22 −55.38 (12) C9—C8—C22—C23 68.42 (12)
C6B—C7—C8—C9 5.26 (10) C7—C8—C22—C23 −51.12 (12)
C16—C7—C8—C9 179.59 (9) C27—C22—C23—C24 0.19 (14)
O—C8—C9—C9A 109.16 (9) C8—C22—C23—C24 −179.80 (9)
C22—C8—C9—C9A −132.62 (9) C27—C22—C23—C28 −177.52 (9)
C7—C8—C9—C9A −7.08 (10) C8—C22—C23—C28 2.49 (14)
O—C8—C9—C10 −71.01 (11) C22—C23—C24—C25 0.17 (15)
C22—C8—C9—C10 47.21 (13) C28—C23—C24—C25 178.01 (9)
C7—C8—C9—C10 172.76 (9) C23—C24—C25—C26 −0.63 (16)
C10—C9—C9A—C9B 13.9 (2) C24—C25—C26—C27 0.73 (16)
C8—C9—C9A—C9B −166.31 (13) C25—C26—C27—C22 −0.38 (16)
C10—C9—C9A—C6B −173.44 (10) C23—C22—C27—C26 −0.08 (15)
C8—C9—C9A—C6B 6.38 (11) C8—C22—C27—C26 179.91 (9)
C7—C6B—C9A—C9 −3.06 (12) C24—C23—C28—C29 102.27 (12)
C6A—C6B—C9A—C9 −177.79 (9) C22—C23—C28—C29 −79.98 (13)
C7—C6B—C9A—C9B 172.06 (9) C24—C23—C28—C33 −74.17 (12)
C6A—C6B—C9A—C9B −2.67 (11) C22—C23—C28—C33 103.59 (12)
C2—C1—C9B—C6A1 0.52 (17) C33—C28—C29—C30 −2.35 (15)
C2—C1—C9B—C9A 173.55 (12) C23—C28—C29—C30 −178.79 (10)
C3A—C6A1—C9B—C1 −1.53 (17) C28—C29—C30—C31 0.54 (16)
C6A—C6A1—C9B—C1 175.23 (10) C29—C30—C31—C32 1.38 (17)
C3A—C6A1—C9B—C9A −176.42 (10) C30—C31—C32—C33 −1.47 (17)
C6A—C6A1—C9B—C9A 0.34 (12) C31—C32—C33—C28 −0.37 (17)
C9—C9A—C9B—C1 0.6 (2) C29—C28—C33—C32 2.27 (16)
C6B—C9A—C9B—C1 −172.20 (12) C23—C28—C33—C32 178.81 (10)
C9—C9A—C9B—C6A1 174.27 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2916).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Saragi, T. P. I., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. & Salbeck, J. (2007). Chem. Rev.107, 1011–1065. [DOI] [PubMed]
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  5. Velusamy, M., Thomas, K. R. J., Chen, C.-H., Lin, J. T., Wen, Y. S., Hsieh, W.-T., Lai, C.-H. & Chou, P.-T. (2007). Dalton Trans. pp. 3025–3034. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011222/bt2916sup1.cif

e-65-0o927-sup1.cif (29.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011222/bt2916Isup2.hkl

e-65-0o927-Isup2.hkl (384.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES