Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):o920. doi: 10.1107/S1600536809010903

5-(1-Cyclo­hexen-1-yl)-3-(4-methoxy­phen­yl)isoxazole

Gabriel Vallejos a, Margarita Gutierrez b, Luis Astudillo b, Iván Brito c,*, Alejandro Cárdenas d
PMCID: PMC2968997  PMID: 21582622

Abstract

In the title compound, C16H17NO2, the isoxazole ring makes a dihedral angle of 14.81 (13)° with the 4-methoxy­phenyl ring. Two atoms of the cyclo­hexene ring are disordered over two almost equally occupied positions [0.526 (13)/0.474 (13)]. The mol­ecular structure features a short intra­molecular C—H⋯O contact.

Related literature

For background to isoxazoles, see: Melo (2005). For their biological activities, see: Narlawar et al. (2008); Patrick et al. (2007); Taldone et al. (2008); Rizzi et al. (2008); Velaparthi et al. (2008). For synthetic details, see: Hansen et al. (2005).graphic file with name e-65-0o920-scheme1.jpg

Experimental

Crystal data

  • C16H17NO2

  • M r = 255.31

  • Triclinic, Inline graphic

  • a = 5.8690 (11) Å

  • b = 10.9646 (19) Å

  • c = 11.481 (5) Å

  • α = 77.889 (2)°

  • β = 75.728 (5)°

  • γ = 80.262 (9)°

  • V = 694.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.20 × 0.16 × 0.10 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 4217 measured reflections

  • 2467 independent reflections

  • 2023 reflections with I > 2σ(I)

  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.135

  • S = 1.14

  • 2467 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010903/bt2910sup1.cif

e-65-0o920-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010903/bt2910Isup2.hkl

e-65-0o920-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.48 2.811 (3) 101

Acknowledgments

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.

supplementary crystallographic information

Comment

Isoxazoles are molecules of great interest in chemistry because many natural products have been synthesized starting from these ones (Melo, 2005), and also because these compounds exhibit diverse biological activities [i.e.antiprotozoalactivities (Patrick et al., 2007), Hsp90 superchaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008) Mycobacteriumtuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008), and neuronal nicotinic acetylcholine receptors agonist (Rizzi et al., 2008)]. This compound was evaluated against acetilcholinesterase (AChE) enzyme, it showed moderate inhibitory activity toward AChE, with a IC50 of 2.16 mM. For these reasons, the synthesis and structure of isoxazole is still of great interest. We report here the crystal structure of the title compound, Fig.1. The planar isoxazole makes a dihedral angle of 14.85 (13)° with the 4-methoxyphenyl ring and 25.1 (3)° and 14.1 (3)° with the cyclohexene groups, respectively. The molecular structure is stabilized by one intramolecular C—H··· O hydrogen bond, Table 1.

Experimental

Melting points were recorded on an Electrothermal 9100 instrument and are uncorrected; IR spectra were obtained on a Nicolet Nexus 470-FTIR spectrometer as potassium bromide pellets and are reported in wavenumbers (cm-1). 1H and 13C NMR spectra were measured on a Bruker AM-400 spectrometer (400 MHz), using CDCl3 assolvent. TMS was used as an internal standard. Chemical shifts (d) and J values are reported in p.p.m. and Hz, respectively. Reaction progress was monitored by means of thin-layer chromatography using Merck Kieselgel 60 (230–240 mesh). All reagents were purchased from Merck, Sigma and Aldrich Chemical Co. and used without further purification. Solvents were dried and distilled prior to use.

5-(1-cyclohexen-1-yl)-3-(4-methoxyphenyl)isoxazole was obtained using the method described by Hansen et al. (2005), starting from 4-methoxybenzaldehyde (2.72 g, 20 mmol), hydroxylamine hydrochloride (1.46 g, 21 mmol), chloramine-T trihydrate (5.9 g, 21 mmol) and 1-Ethynylcyclohexene (2.23 g,21 mmol) (See Fig. 2), giving off-white solid; mp 76–78 °C, yield 93%. Yellow block-shaped crystals of (I) suitable for X-ray analysis were grown from a hexane/EtOAc solution (1:1 v/v) at 298 K over a period of a few days. RMN-1H(CDCl3, 400 MHz): d 7,74 (d, J= 8.9 Hz, 2H); 6,96 (d, J= 8.9 Hz, 2H); 6,64 (m, 1H); 6,32 (s,1H); 3,85 (s, 1H); 2,37 (m, 2H); 2,26 (m, 2H); 1,77 (m, 2H); 1,69 (m, 2H). RMN-13C(CDCl3, 100 MHz): d 171.35, 161.99,160.83, 129.98, 128.07, 125.40, 121.98, 114.21, 95.93, 55.31, 25.39, 25.20,22.08, 21.70. F T–IR (KBr pellet, cm-1): 3851, 2935, 1652, 1525, 1430, 1248, 1177, 1030, 919.

Refinement

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and refined as riding model, with Uiso(H) = 1.2 or 1.5 times Ueq(C) for aromatic or methyl H atoms respectively. Atoms C3, C4 and hydrogen atoms bonded to C2 and C5 are severely disordered. They were modelled using a split model with refined population parameters [C3A/C3B = 0.474 (13)/0.526 (13); C4A/C4B = 0.474 (13)/0.526 (13); H2A/H2C= H2B/H2D = 0.474 (13)/0.526 (13); H5A/H5C=H5B/H5D = 0.474 (13)/0.526 (13)].

Figures

Fig. 1.

Fig. 1.

A view of the molecular strucuture of (I) with 30% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and intramolecular hydrogen bond is indicated by dotted lines. Atoms C3, C4 and hydrogen atoms bonded to C2 and C5 are severely disordered.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

C16H17NO2 Z = 2
Mr = 255.31 F(000) = 272
Triclinic, P1 Dx = 1.221 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8690 (11) Å Cell parameters from 2123 reflections
b = 10.9646 (19) Å θ = 1.9–24.4°
c = 11.481 (5) Å µ = 0.08 mm1
α = 77.889 (2)° T = 295 K
β = 75.728 (5)° Block, yellow
γ = 80.262 (9)° 0.20 × 0.16 × 0.10 mm
V = 694.7 (4) Å3

Data collection

Nonius KappaCCD area-detector diffractometer 2023 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.076
graphite θmax = 25.2°, θmin = 3.6°
φ scans, and ω scans with κ offsets h = 0→7
2467 measured reflections k = −12→13
2467 independent reflections l = −12→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.128P] where P = (Fo2 + 2Fc2)/3
2467 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.3554 (2) 0.17491 (13) −0.04016 (12) 0.0640 (4)
O2 −0.2921 (2) 0.60615 (14) 0.41851 (13) 0.0715 (4)
N1 0.3139 (3) 0.25243 (16) 0.04881 (15) 0.0628 (5)
C1 0.1547 (3) 0.10166 (16) −0.16684 (15) 0.0495 (4)
C2 −0.0473 (4) 0.1345 (2) −0.2317 (2) 0.0690 (6)
H2A −0.0272 0.2116 −0.2907 0.083* 0.474 (13)
H2B −0.1962 0.1473 −0.1734 0.083* 0.474 (13)
H2C −0.0855 0.2253 −0.2471 0.083* 0.526 (13)
H2D −0.1854 0.0998 −0.178 0.083* 0.526 (13)
C3A −0.0493 (12) 0.0236 (11) −0.2981 (9) 0.071 (2) 0.474 (13)
H3A1 −0.1043 −0.0477 −0.238 0.106* 0.474 (13)
H3A2 −0.1588 0.0494 −0.3523 0.106* 0.474 (13)
C4A 0.1966 (18) −0.0159 (11) −0.3718 (9) 0.081 (2) 0.474 (13)
H4A1 0.1885 −0.0773 −0.4199 0.121* 0.474 (13)
H4A2 0.2607 0.0564 −0.4266 0.121* 0.474 (13)
C5 0.3446 (4) −0.0697 (2) −0.2859 (2) 0.0758 (6)
H5A 0.5079 −0.0816 −0.3303 0.091* 0.474 (13)
H5B 0.2998 −0.1517 −0.245 0.091* 0.474 (13)
H5C 0.3818 −0.1576 −0.252 0.091* 0.526 (13)
H5D 0.4711 −0.0468 −0.3556 0.091* 0.526 (13)
C6 0.3280 (3) 0.00944 (18) −0.19162 (18) 0.0607 (5)
H6 0.4466 −0.007 −0.1476 0.073*
C7 0.1488 (3) 0.17676 (16) −0.07484 (15) 0.0483 (4)
C8 −0.0224 (3) 0.25240 (16) −0.01282 (15) 0.0494 (4)
H8 −0.1798 0.2716 −0.0194 0.059*
C9 0.0881 (3) 0.29654 (16) 0.06460 (16) 0.0475 (4)
C10 −0.0167 (3) 0.37884 (16) 0.15521 (15) 0.0470 (4)
C11 −0.2372 (3) 0.44858 (17) 0.15767 (16) 0.0534 (5)
H11 −0.3215 0.4431 0.1006 0.064*
C12 −0.3358 (3) 0.52620 (17) 0.24271 (17) 0.0550 (5)
H12 −0.4838 0.5726 0.242 0.066*
C13 −0.2127 (3) 0.53436 (17) 0.32878 (17) 0.0539 (5)
C14 0.0074 (3) 0.4641 (2) 0.32840 (19) 0.0650 (5)
H14 0.0903 0.4686 0.3864 0.078*
C15 0.1035 (3) 0.38833 (19) 0.24361 (18) 0.0605 (5)
H15 0.2516 0.3422 0.2446 0.073*
C16 −0.5130 (4) 0.6839 (2) 0.4212 (2) 0.0756 (6)
H16A −0.5046 0.7435 0.3464 0.113*
H16B −0.5476 0.7279 0.4887 0.113*
H16C −0.6359 0.6327 0.4303 0.113*
C3B 0.0006 (13) 0.0880 (9) −0.3512 (8) 0.0726 (19) 0.526 (13)
H3B1 0.1138 0.1355 −0.4124 0.087* 0.526 (13)
H3B2 −0.1448 0.0981 −0.3799 0.087* 0.526 (13)
C4B 0.0995 (17) −0.0499 (7) −0.3290 (8) 0.0731 (19) 0.526 (13)
H4B1 0.1244 −0.0833 −0.4036 0.11* 0.526 (13)
H4B2 −0.0147 −0.0961 −0.267 0.11* 0.526 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0476 (7) 0.0832 (9) 0.0673 (9) 0.0055 (6) −0.0185 (6) −0.0305 (7)
O2 0.0740 (9) 0.0768 (9) 0.0685 (9) 0.0023 (7) −0.0157 (7) −0.0325 (8)
N1 0.0514 (9) 0.0822 (11) 0.0622 (10) 0.0027 (8) −0.0193 (7) −0.0297 (9)
C1 0.0466 (10) 0.0553 (10) 0.0451 (10) −0.0090 (8) −0.0065 (7) −0.0073 (8)
C2 0.0610 (12) 0.0819 (14) 0.0743 (14) −0.0005 (10) −0.0252 (10) −0.0304 (12)
C3A 0.062 (3) 0.087 (6) 0.075 (5) −0.004 (3) −0.027 (3) −0.029 (4)
C4A 0.079 (5) 0.106 (6) 0.063 (5) −0.008 (4) −0.010 (4) −0.039 (4)
C5 0.0782 (14) 0.0745 (14) 0.0755 (15) 0.0014 (11) −0.0122 (12) −0.0294 (12)
C6 0.0594 (11) 0.0648 (12) 0.0584 (12) −0.0014 (9) −0.0147 (9) −0.0146 (10)
C7 0.0430 (9) 0.0559 (10) 0.0456 (10) −0.0077 (7) −0.0113 (7) −0.0045 (8)
C8 0.0406 (9) 0.0601 (11) 0.0484 (10) −0.0046 (7) −0.0113 (7) −0.0111 (8)
C9 0.0432 (9) 0.0525 (10) 0.0451 (10) −0.0071 (7) −0.0110 (7) −0.0023 (8)
C10 0.0439 (9) 0.0529 (10) 0.0437 (10) −0.0100 (7) −0.0086 (7) −0.0055 (8)
C11 0.0510 (10) 0.0624 (11) 0.0494 (11) −0.0056 (8) −0.0173 (8) −0.0090 (9)
C12 0.0481 (10) 0.0588 (11) 0.0555 (11) 0.0009 (8) −0.0131 (8) −0.0084 (9)
C13 0.0568 (11) 0.0542 (11) 0.0501 (11) −0.0103 (8) −0.0083 (8) −0.0092 (9)
C14 0.0571 (11) 0.0840 (14) 0.0632 (13) −0.0055 (10) −0.0233 (9) −0.0242 (11)
C15 0.0470 (10) 0.0772 (13) 0.0627 (13) 0.0006 (9) −0.0188 (9) −0.0227 (10)
C16 0.0791 (14) 0.0645 (13) 0.0747 (15) 0.0025 (11) −0.0032 (11) −0.0189 (11)
C3B 0.090 (4) 0.072 (4) 0.066 (4) −0.002 (3) −0.035 (3) −0.019 (3)
C4B 0.087 (5) 0.072 (4) 0.067 (4) −0.003 (3) −0.020 (4) −0.029 (3)

Geometric parameters (Å, °)

O1—C7 1.362 (2) C5—H5D 0.97
O1—N1 1.413 (2) C6—H6 0.93
O2—C13 1.370 (2) C7—C8 1.348 (2)
O2—C16 1.424 (2) C8—C9 1.420 (2)
N1—C9 1.313 (2) C8—H8 0.93
C1—C6 1.330 (2) C9—C10 1.472 (2)
C1—C7 1.460 (3) C10—C11 1.384 (2)
C1—C2 1.506 (3) C10—C15 1.400 (3)
C2—C3B 1.509 (6) C11—C12 1.384 (2)
C2—C3A 1.569 (7) C11—H11 0.93
C2—H2A 0.97 C12—C13 1.385 (3)
C2—H2B 0.97 C12—H12 0.93
C2—H2C 0.97 C13—C14 1.387 (3)
C2—H2D 0.97 C14—C15 1.366 (3)
C3A—C4A 1.525 (13) C14—H14 0.93
C3A—H3A1 0.97 C15—H15 0.93
C3A—H3A2 0.97 C16—H16A 0.96
C4A—C5 1.442 (9) C16—H16B 0.96
C4A—H4A1 0.97 C16—H16C 0.96
C4A—H4A2 0.97 C3B—C4B 1.517 (12)
C5—C6 1.499 (3) C3B—H3B1 0.97
C5—C4B 1.601 (8) C3B—H3B2 0.97
C5—H5A 0.97 C4B—H4B1 0.97
C5—H5B 0.97 C4B—H4B2 0.97
C5—H5C 0.97
C7—O1—N1 108.69 (13) C4B—C5—H5D 109.6
C13—O2—C16 118.24 (16) H5B—C5—H5D 130.2
C9—N1—O1 105.65 (13) H5C—C5—H5D 108.1
C6—C1—C7 121.93 (16) C1—C6—C5 124.23 (19)
C6—C1—C2 121.99 (18) C1—C6—H6 117.9
C7—C1—C2 116.08 (15) C5—C6—H6 117.9
C1—C2—C3B 114.7 (3) C8—C7—O1 108.99 (15)
C1—C2—C3A 108.3 (3) C8—C7—C1 133.87 (16)
C1—C2—H2A 110 O1—C7—C1 117.14 (15)
C3B—C2—H2A 78 C7—C8—C9 105.51 (15)
C3A—C2—H2A 110 C7—C8—H8 127.2
C1—C2—H2B 110 C9—C8—H8 127.2
C3B—C2—H2B 129.1 N1—C9—C8 111.14 (16)
C3A—C2—H2B 110 N1—C9—C10 119.80 (15)
H2A—C2—H2B 108.4 C8—C9—C10 129.05 (15)
C1—C2—H2C 108.6 C11—C10—C15 117.38 (17)
C3B—C2—H2C 108.6 C11—C10—C9 121.84 (15)
C3A—C2—H2C 136.3 C15—C10—C9 120.78 (16)
H2B—C2—H2C 77.8 C12—C11—C10 121.89 (16)
C1—C2—H2D 108.6 C12—C11—H11 119.1
C3B—C2—H2D 108.6 C10—C11—H11 119.1
C3A—C2—H2D 81.5 C11—C12—C13 119.56 (16)
H2A—C2—H2D 133 C11—C12—H12 120.2
H2C—C2—H2D 107.6 C13—C12—H12 120.2
C4A—C3A—C2 111.4 (8) O2—C13—C12 125.20 (17)
C4A—C3A—H3A1 109.3 O2—C13—C14 115.51 (16)
C2—C3A—H3A1 109.3 C12—C13—C14 119.28 (18)
C4A—C3A—H3A2 109.3 C15—C14—C13 120.63 (17)
C2—C3A—H3A2 109.3 C15—C14—H14 119.7
H3A1—C3A—H3A2 108 C13—C14—H14 119.7
C5—C4A—C3A 107.3 (8) C14—C15—C10 121.24 (18)
C5—C4A—H4A1 110.3 C14—C15—H15 119.4
C3A—C4A—H4A1 110.3 C10—C15—H15 119.4
C5—C4A—H4A2 110.3 O2—C16—H16A 109.5
C3A—C4A—H4A2 110.3 O2—C16—H16B 109.5
H4A1—C4A—H4A2 108.5 H16A—C16—H16B 109.5
C4A—C5—C6 113.5 (4) O2—C16—H16C 109.5
C6—C5—C4B 110.4 (3) H16A—C16—H16C 109.5
C4A—C5—H5A 108.9 H16B—C16—H16C 109.5
C6—C5—H5A 108.9 C2—C3B—C4B 107.7 (7)
C4B—C5—H5A 131.7 C2—C3B—H3B1 110.2
C4A—C5—H5B 108.9 C4B—C3B—H3B1 110.2
C6—C5—H5B 108.9 C2—C3B—H3B2 110.2
C4B—C5—H5B 84.8 C4B—C3B—H3B2 110.2
H5A—C5—H5B 107.7 H3B1—C3B—H3B2 108.5
C4A—C5—H5C 128.3 C3B—C4B—C5 111.5 (7)
C6—C5—H5C 109.6 C3B—C4B—H4B1 109.3
C4B—C5—H5C 109.6 C5—C4B—H4B1 109.3
H5A—C5—H5C 81.9 C3B—C4B—H4B2 109.3
C4A—C5—H5D 83 C5—C4B—H4B2 109.3
C6—C5—H5D 109.6 H4B1—C4B—H4B2 108
C7—O1—N1—C9 0.36 (19) C7—C8—C9—N1 1.2 (2)
C6—C1—C2—C3B −19.4 (5) C7—C8—C9—C10 −177.85 (16)
C7—C1—C2—C3B 160.8 (5) N1—C9—C10—C11 166.10 (16)
C6—C1—C2—C3A 15.2 (5) C8—C9—C10—C11 −14.9 (3)
C7—C1—C2—C3A −164.6 (5) N1—C9—C10—C15 −14.6 (3)
C1—C2—C3A—C4A −48.6 (11) C8—C9—C10—C15 164.40 (18)
C3B—C2—C3A—C4A 58.7 (9) C15—C10—C11—C12 0.8 (3)
C2—C3A—C4A—C5 66.8 (13) C9—C10—C11—C12 −179.88 (15)
C3A—C4A—C5—C6 −48.4 (12) C10—C11—C12—C13 −0.5 (3)
C3A—C4A—C5—C4B 41.0 (10) C16—O2—C13—C12 −3.3 (3)
C7—C1—C6—C5 −179.31 (18) C16—O2—C13—C14 177.82 (17)
C2—C1—C6—C5 0.9 (3) C11—C12—C13—O2 −179.06 (16)
C4A—C5—C6—C1 16.8 (6) C11—C12—C13—C14 −0.2 (3)
C4B—C5—C6—C1 −13.1 (5) O2—C13—C14—C15 179.53 (17)
N1—O1—C7—C8 0.39 (19) C12—C13—C14—C15 0.6 (3)
N1—O1—C7—C1 −179.91 (14) C13—C14—C15—C10 −0.3 (3)
C6—C1—C7—C8 −162.0 (2) C11—C10—C15—C14 −0.4 (3)
C2—C1—C7—C8 17.8 (3) C9—C10—C15—C14 −179.76 (17)
C6—C1—C7—O1 18.4 (2) C1—C2—C3B—C4B 49.0 (10)
C2—C1—C7—O1 −161.79 (16) C3A—C2—C3B—C4B −36.8 (7)
O1—C7—C8—C9 −0.93 (19) C2—C3B—C4B—C5 −61.8 (11)
C1—C7—C8—C9 179.44 (18) C4A—C5—C4B—C3B −57.8 (11)
O1—N1—C9—C8 −1.0 (2) C6—C5—C4B—C3B 44.2 (10)
O1—N1—C9—C10 178.20 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1 0.93 2.48 2.811 (3) 101

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2910).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Hansen, T. V., Wu, P. & Fokin, V. V. (2005). J. Org. Chem.70, 7761–7764. [DOI] [PubMed]
  5. Melo, T. (2005). Curr. Org. Chem.9, 925–958.
  6. Narlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem.3, 165–172. [DOI] [PubMed]
  7. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Patrick, D. A., Bakunov, S. A., Bakunova, S. M., Kumar, E., Lombardy, R. J., Jones, S. K., Bridges, A. S., Zhirnov, O., Hall, J. E., Wenzler, T., Brun, R. & Tidwell, R. R. (2007). J. Med. Chem.50, 2468–2485. [DOI] [PubMed]
  10. Rizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett.18, 4651–4654. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol.8, 370–374. [DOI] [PMC free article] [PubMed]
  14. Velaparthi, S., Brunsteiner, M., Uddin, R., Wan, B. J., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem.51, 1999–2002. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010903/bt2910sup1.cif

e-65-0o920-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010903/bt2910Isup2.hkl

e-65-0o920-Isup2.hkl (118.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES