Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):m459. doi: 10.1107/S1600536809010599

Tetra­aqua­bis[(1-ammonio-1-phosphono­ethyl)phospho­nato]zinc(II) tetra­hydrate

A Dudko a,*, V Bon a, A Kozachkova a, V Pekhnyo a
PMCID: PMC2969005  PMID: 21582392

Abstract

The title compound, [Zn(C2H8NO6P2)2(H2O)4]·4H2O, was synthesized by the reaction of ZnCl2 with 1-amino­ethane-1,1-diyldiphospho­nic acid in aqueous solution. The asymmetric unit contains one-half of the complex and two water mol­ecules of solvation. The Zn atom occupies a special position on an inversion centre. This results in a slightly distorted octa­hedral coordination environment, which consists of the O atoms from two phospho­nic acids and four water mol­ecules. The crystal structure displays N—H⋯O and O—H⋯O hydrogen bonding, which creates a three-dimensional network.

Related literature

Diphospho­nic acids are efficient drugs for the prevention of calcification and the inhibition of bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005). Diphospho­nic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis, see: Szabo et al. (2002). For related structures, see: Li et al. (2006, 2007); Lin et al. (2007).graphic file with name e-65-0m459-scheme1.jpg

Experimental

Crystal data

  • [Zn(C2H8NO6P2)2(H2O)4]·4H2O

  • M r = 617.57

  • Triclinic, Inline graphic

  • a = 5.6712 (4) Å

  • b = 9.3279 (6) Å

  • c = 10.7009 (7) Å

  • α = 96.440 (3)°

  • β = 90.788 (3)°

  • γ = 102.080 (3)°

  • V = 549.65 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 173 K

  • 0.36 × 0.10 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2005) T min = 0.612, T max = 0.945

  • 8897 measured reflections

  • 2244 independent reflections

  • 1747 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.081

  • S = 1.00

  • 2244 reflections

  • 182 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010599/fj2201sup1.cif

e-65-0m459-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010599/fj2201Isup2.hkl

e-65-0m459-Isup2.hkl (110.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.93 (4) 1.96 (4) 2.796 (4) 150 (3)
N1—H1B⋯O10 0.85 (4) 1.99 (4) 2.827 (4) 168 (3)
N1—H1C⋯O3i 0.90 (4) 2.01 (4) 2.851 (3) 153 (3)
O2—H2O⋯O3ii 0.78 (3) 1.76 (3) 2.536 (3) 172 (4)
O5—H5O⋯O6iii 0.793 (18) 1.726 (19) 2.519 (3) 177 (4)
O7—H71⋯O8iv 0.84 (4) 2.05 (4) 2.826 (3) 155 (3)
O7—H72⋯O10 0.76 (4) 2.00 (4) 2.748 (3) 168 (4)
O8—H81⋯O2 0.82 (4) 1.97 (4) 2.772 (3) 163 (3)
O8—H82⋯O9 0.86 (4) 1.79 (4) 2.646 (3) 174 (3)
O9—H91⋯O5v 0.87 (4) 1.94 (4) 2.810 (3) 172 (3)
O9—H92⋯O4vi 0.83 (4) 1.91 (4) 2.715 (3) 165 (4)
O10—H101⋯O4vii 0.85 (4) 1.90 (4) 2.744 (3) 175 (3)
O10—H102⋯O9iv 0.80 (4) 1.96 (4) 2.741 (3) 167 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

supplementary crystallographic information

Comment

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon et al., 2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). The asymmetric unit of title compound contains one-half of the formula unit (Fig.1); Zn atom occupy special position at the inversion centre and creates a slightly distorted octahedral coordination environment, which consist of two phosphonic and four aqueous oxygen atoms. The coordinated diphosphonic acids residue exist as zwitterions with positive charge on NH3 group and negative on the oxygen atom of the non-coordinated phosphonic group. The crystal structure displays N—H···O and O—H···O hydrogen bonding, which creates a three-dimensional network (Table 1, Fig.2).

Experimental

10 ml of the 0.01 M ZnCl2 aqueous solution was added to the 10 ml of 0.02 M water solution of 1-aminoethane-1,1-diyldiphosphonic acid. Colorless crystals of title compound were obtained after 2 weeks of slow evaporation of the resulted solution.

Refinement

H atoms bonded to N and O were located in a difference map and were freely refined with Uiso(H) = 1.2 Ueq of the carrier atom. Other H atoms which bonded to C were positioned geometrically and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms [Symmetry code: (i) -x, 1 - y, 1 - z].

Fig. 2.

Fig. 2.

Crystal packing of title compound, projection along a axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Zn(C2H8NO6P2)2(H2O)4]·4H2O Z = 1
Mr = 617.57 F(000) = 320
Triclinic, P1 Dx = 1.866 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.6712 (4) Å Cell parameters from 2105 reflections
b = 9.3279 (6) Å θ = 2.3–25.9°
c = 10.7009 (7) Å µ = 1.50 mm1
α = 96.440 (3)° T = 173 K
β = 90.788 (3)° Block, colourless
γ = 102.080 (3)° 0.36 × 0.10 × 0.04 mm
V = 549.65 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 2244 independent reflections
Radiation source: fine-focus sealed tube 1747 reflections with I > 2σ(I)
graphite Rint = 0.058
Detector resolution: 8.26 pixels mm-1 θmax = 26.4°, θmin = 2.3°
φ and ω scans h = −7→7
Absorption correction: numerical (SADABS; Bruker, 2005) k = −11→10
Tmin = 0.612, Tmax = 0.945 l = −13→13
8897 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0395P)2] where P = (Fo2 + 2Fc2)/3
2244 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.39 e Å3
1 restraint Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.0000 0.5000 0.5000 0.01171 (16)
P1 0.02405 (14) 0.80873 (8) 0.37915 (7) 0.01033 (19)
P2 −0.00669 (14) 0.81048 (9) 0.09143 (7) 0.0116 (2)
C1 0.1808 (5) 0.8672 (3) 0.2381 (3) 0.0109 (6)
C2 0.2791 (6) 1.0348 (3) 0.2544 (3) 0.0176 (7)
H2A 0.3983 1.0614 0.3248 0.026*
H2B 0.1461 1.0855 0.2716 0.026*
H2C 0.3557 1.0644 0.1770 0.026*
N1 0.3905 (5) 0.7921 (3) 0.2240 (3) 0.0133 (6)
H1A 0.483 (6) 0.830 (4) 0.160 (3) 0.020*
H1B 0.349 (6) 0.699 (4) 0.208 (3) 0.020*
H1C 0.485 (6) 0.807 (4) 0.295 (3) 0.020*
O1 −0.0090 (4) 0.6449 (2) 0.37040 (19) 0.0135 (5)
O2 0.2165 (4) 0.8783 (2) 0.4886 (2) 0.0143 (5)
H2O 0.206 (6) 0.956 (4) 0.519 (3) 0.017*
O3 −0.1966 (4) 0.8741 (2) 0.39210 (19) 0.0139 (5)
O4 −0.0857 (4) 0.6470 (2) 0.0759 (2) 0.0181 (5)
O5 0.1793 (4) 0.8548 (2) −0.0123 (2) 0.0148 (5)
H5O 0.182 (6) 0.931 (3) −0.039 (3) 0.018*
O6 −0.1990 (4) 0.8997 (2) 0.0930 (2) 0.0156 (5)
O7 0.1908 (4) 0.3844 (3) 0.3764 (2) 0.0183 (5)
H71 0.319 (7) 0.371 (4) 0.408 (3) 0.022*
H72 0.204 (7) 0.413 (4) 0.312 (4) 0.022*
O8 0.3234 (4) 0.6366 (3) 0.5883 (2) 0.0152 (5)
H81 0.311 (6) 0.719 (4) 0.571 (3) 0.018*
H82 0.300 (6) 0.633 (4) 0.667 (4) 0.018*
O9 0.2666 (4) 0.6106 (3) 0.8304 (2) 0.0181 (5)
H91 0.228 (6) 0.681 (4) 0.882 (3) 0.022*
H92 0.189 (6) 0.532 (4) 0.852 (3) 0.022*
O10 0.3107 (4) 0.4849 (3) 0.1490 (2) 0.0187 (5)
H101 0.236 (6) 0.448 (4) 0.079 (4) 0.022*
H102 0.437 (7) 0.460 (4) 0.143 (3) 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0117 (3) 0.0109 (3) 0.0129 (3) 0.0029 (2) 0.0003 (2) 0.0021 (2)
P1 0.0105 (4) 0.0103 (4) 0.0105 (4) 0.0031 (3) 0.0003 (3) 0.0009 (3)
P2 0.0115 (4) 0.0125 (4) 0.0116 (4) 0.0031 (3) −0.0009 (3) 0.0035 (3)
C1 0.0096 (15) 0.0088 (15) 0.0146 (16) 0.0030 (12) 0.0003 (12) 0.0007 (12)
C2 0.0208 (18) 0.0114 (16) 0.0183 (18) −0.0021 (13) 0.0001 (14) 0.0017 (13)
N1 0.0105 (14) 0.0155 (15) 0.0134 (15) 0.0010 (12) −0.0017 (11) 0.0032 (12)
O1 0.0179 (12) 0.0093 (11) 0.0133 (12) 0.0028 (9) 0.0007 (9) 0.0011 (8)
O2 0.0164 (12) 0.0141 (12) 0.0129 (12) 0.0067 (10) −0.0032 (9) −0.0032 (9)
O3 0.0118 (11) 0.0150 (12) 0.0154 (12) 0.0049 (9) −0.0013 (9) −0.0004 (9)
O4 0.0224 (13) 0.0143 (12) 0.0158 (12) 0.0001 (9) −0.0047 (10) 0.0013 (9)
O5 0.0187 (12) 0.0118 (12) 0.0167 (12) 0.0061 (10) 0.0061 (9) 0.0080 (9)
O6 0.0113 (11) 0.0206 (12) 0.0178 (12) 0.0060 (9) 0.0024 (9) 0.0092 (9)
O7 0.0186 (13) 0.0225 (13) 0.0162 (13) 0.0090 (10) −0.0004 (11) 0.0043 (10)
O8 0.0146 (12) 0.0139 (12) 0.0181 (13) 0.0034 (10) −0.0017 (10) 0.0054 (10)
O9 0.0201 (13) 0.0148 (12) 0.0199 (13) 0.0042 (10) 0.0041 (10) 0.0025 (10)
O10 0.0152 (13) 0.0239 (13) 0.0176 (13) 0.0072 (11) −0.0022 (10) −0.0004 (10)

Geometric parameters (Å, °)

Zn1—O1 2.050 (2) C2—H2A 0.9800
Zn1—O1i 2.050 (2) C2—H2B 0.9800
Zn1—O7i 2.071 (2) C2—H2C 0.9800
Zn1—O7 2.071 (2) N1—H1A 0.93 (4)
Zn1—O8i 2.141 (2) N1—H1B 0.85 (4)
Zn1—O8 2.141 (2) N1—H1C 0.90 (4)
P1—O1 1.492 (2) O2—H2O 0.78 (3)
P1—O3 1.504 (2) O5—H5O 0.793 (18)
P1—O2 1.575 (2) O7—H71 0.84 (4)
P1—C1 1.839 (3) O7—H72 0.76 (4)
P2—O4 1.486 (2) O8—H81 0.82 (4)
P2—O6 1.503 (2) O8—H82 0.86 (4)
P2—O5 1.571 (2) O9—H91 0.87 (4)
P2—C1 1.846 (3) O9—H92 0.83 (4)
C1—N1 1.502 (4) O10—H101 0.85 (4)
C1—C2 1.535 (4) O10—H102 0.80 (4)
O1—Zn1—O1i 179.999 (1) N1—C1—P1 107.2 (2)
O1—Zn1—O7i 90.77 (9) C2—C1—P1 110.6 (2)
O1i—Zn1—O7i 89.23 (9) N1—C1—P2 106.55 (19)
O1—Zn1—O7 89.23 (9) C2—C1—P2 110.3 (2)
O1i—Zn1—O7 90.77 (9) P1—C1—P2 113.58 (16)
O7i—Zn1—O7 180.00 (11) C1—C2—H2A 109.5
O1—Zn1—O8i 88.74 (9) C1—C2—H2B 109.5
O1i—Zn1—O8i 91.26 (9) H2A—C2—H2B 109.5
O7i—Zn1—O8i 92.46 (9) C1—C2—H2C 109.5
O7—Zn1—O8i 87.54 (9) H2A—C2—H2C 109.5
O1—Zn1—O8 91.27 (9) H2B—C2—H2C 109.5
O1i—Zn1—O8 88.73 (9) C1—N1—H1A 108 (2)
O7i—Zn1—O8 87.54 (9) C1—N1—H1B 114 (2)
O7—Zn1—O8 92.46 (9) H1A—N1—H1B 110 (3)
O8i—Zn1—O8 180.0 C1—N1—H1C 113 (2)
O1—P1—O3 118.11 (12) H1A—N1—H1C 108 (3)
O1—P1—O2 107.82 (12) H1B—N1—H1C 104 (3)
O3—P1—O2 111.01 (12) P1—O1—Zn1 133.80 (13)
O1—P1—C1 107.13 (13) P1—O2—H2O 115 (3)
O3—P1—C1 108.84 (13) P2—O5—H5O 118 (3)
O2—P1—C1 102.79 (13) Zn1—O7—H71 113 (2)
O4—P2—O6 117.67 (13) Zn1—O7—H72 114 (3)
O4—P2—O5 108.21 (12) H71—O7—H72 114 (4)
O6—P2—O5 110.56 (12) Zn1—O8—H81 101 (2)
O4—P2—C1 108.34 (13) Zn1—O8—H82 103 (2)
O6—P2—C1 108.52 (13) H81—O8—H82 108 (3)
O5—P2—C1 102.44 (13) H91—O9—H92 106 (3)
N1—C1—C2 108.4 (3) H101—O10—H102 103 (3)
O1—P1—C1—N1 −47.7 (2) O6—P2—C1—C2 −54.5 (2)
O3—P1—C1—N1 −176.47 (18) O5—P2—C1—C2 62.5 (2)
O2—P1—C1—N1 65.8 (2) O4—P2—C1—P1 −58.45 (19)
O1—P1—C1—C2 −165.7 (2) O6—P2—C1—P1 70.38 (18)
O3—P1—C1—C2 65.6 (2) O5—P2—C1—P1 −172.68 (15)
O2—P1—C1—C2 −52.2 (2) O3—P1—O1—Zn1 −92.94 (19)
O1—P1—C1—P2 69.67 (18) O2—P1—O1—Zn1 33.8 (2)
O3—P1—C1—P2 −59.08 (18) C1—P1—O1—Zn1 143.85 (17)
O2—P1—C1—P2 −176.85 (15) O7i—Zn1—O1—P1 41.88 (18)
O4—P2—C1—N1 59.3 (2) O7—Zn1—O1—P1 −138.12 (18)
O6—P2—C1—N1 −171.88 (19) O8i—Zn1—O1—P1 134.32 (18)
O5—P2—C1—N1 −54.9 (2) O8—Zn1—O1—P1 −45.68 (18)
O4—P2—C1—C2 176.7 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O6ii 0.93 (4) 1.96 (4) 2.796 (4) 150 (3)
N1—H1B···O10 0.85 (4) 1.99 (4) 2.827 (4) 168 (3)
N1—H1C···O3ii 0.90 (4) 2.01 (4) 2.851 (3) 153 (3)
O2—H2O···O3iii 0.78 (3) 1.76 (3) 2.536 (3) 172 (4)
O5—H5O···O6iv 0.79 (2) 1.73 (2) 2.519 (3) 177 (4)
O7—H71···O8v 0.84 (4) 2.05 (4) 2.826 (3) 155 (3)
O7—H72···O10 0.76 (4) 2.00 (4) 2.748 (3) 168 (4)
O8—H81···O2 0.82 (4) 1.97 (4) 2.772 (3) 163 (3)
O8—H82···O9 0.86 (4) 1.79 (4) 2.646 (3) 174 (3)
O9—H91···O5vi 0.87 (4) 1.94 (4) 2.810 (3) 172 (3)
O9—H92···O4i 0.83 (4) 1.91 (4) 2.715 (3) 165 (4)
O10—H101···O4vii 0.85 (4) 1.90 (4) 2.744 (3) 175 (3)
O10—H102···O9v 0.80 (4) 1.96 (4) 2.741 (3) 167 (4)

Symmetry codes: (ii) x+1, y, z; (iii) −x, −y+2, −z+1; (iv) −x, −y+2, −z; (v) −x+1, −y+1, −z+1; (vi) x, y, z+1; (i) −x, −y+1, −z+1; (vii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2201).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Li, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des.6, 1250–1255.
  3. Li, M. & Sun, J.-T. (2007). Acta Cryst. E63, m1370–m1372.
  4. Lin, L., Zhang, T., Fan, Y., Ding, D. & Hou, H. (2007). J. Mol. Struct.837, 107–117.
  5. Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev.249, 2458–2488.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem.45, 2894–2903. [DOI] [PubMed]
  8. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010599/fj2201sup1.cif

e-65-0m459-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010599/fj2201Isup2.hkl

e-65-0m459-Isup2.hkl (110.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES