Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Nov;86(5):1540–1547. doi: 10.1172/JCI114873

Physiological measurements of luminal stirring in the dog and human small bowel.

M D Levitt 1, J K Furne 1, A Strocchi 1, B W Anderson 1, D G Levitt 1
PMCID: PMC296901  PMID: 2243130

Abstract

The resistance to absorption resulting from poor stirring of luminal contents (RLum) is considered to be equivalent to an unstirred layer of greater than 600 microns in the human small intestine. We measured RLum in the jejunum of conscious dogs by assessing the absorption rate of two rapidly absorbed probes, glucose, and [14C]warfarin. When RLum was expressed as an unstirred layer, the maximal thickness of the unstirred layer (assuming negligible epithelial cell resistance) was only approximately 35 and 50 microns for perfusion rates of 26 and 5 ml/min, respectively. Maximal unstirred layer thickness for the human jejunum, calculated from previous studies of glucose absorption, yielded a mean value of only 40 microns (range: 23 to 65 microns). Since epithelial resistance appears to be negligible during absorption of low concentrations of glucose, the maximal unstirred layer of 40 microns should be close to the true value for glucose in the human small intestine. We conclude that the unstirred layer for rapidly absorbed compounds in dogs and man are less than one-tenth of previously reported values, but this layer still may remain the rate limiting step in absorption of rapidly transported compounds.

Full text

PDF
1540

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. W., Levine A. S., Levitt D. G., Kneip J. M., Levitt M. D. Physiological measurement of luminal stirring in perfused rat jejunum. Am J Physiol. 1988 Jun;254(6 Pt 1):G843–G848. doi: 10.1152/ajpgi.1988.254.6.G843. [DOI] [PubMed] [Google Scholar]
  2. Brown B. D., Ammon H. V. Effect of glucose on jejunal water and solute absorption in the presence of glycodeoxycholate and oleate in man. Dig Dis Sci. 1981 Aug;26(8):710–717. doi: 10.1007/BF01316860. [DOI] [PubMed] [Google Scholar]
  3. Cerda J. J., Robbins F. L., Burgin C. W., Gerencser G. A. Unstirred water layers in rabbit intestine: effects of guar gum. JPEN J Parenter Enteral Nutr. 1987 Jan-Feb;11(1):63–66. doi: 10.1177/014860718701100163. [DOI] [PubMed] [Google Scholar]
  4. DOW P. Estimations of cardiac output and central blood volume by dye dilution. Physiol Rev. 1956 Jan;36(1):77–102. doi: 10.1152/physrev.1956.36.1.77. [DOI] [PubMed] [Google Scholar]
  5. Diamond J. M. A rapid method for determining voltage-concentration relations across membranes. J Physiol. 1966 Mar;183(1):83–100. doi: 10.1113/jphysiol.1966.sp007852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flourie B., Vidon N., Florent C. H., Bernier J. J. Effect of pectin on jejunal glucose absorption and unstirred layer thickness in normal man. Gut. 1984 Sep;25(9):936–941. doi: 10.1136/gut.25.9.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frase L. L., Strickland A. D., Kachel G. W., Krejs G. J. Enhanced glucose absorption in the jejunum of patients with cystic fibrosis. Gastroenterology. 1985 Feb;88(2):478–484. doi: 10.1016/0016-5085(85)90510-4. [DOI] [PubMed] [Google Scholar]
  8. Gray G. M., Ingelfinger F. J. Intestinal absorption of sucrose in man: interrelation of hydrolysis and monosaccharide product absorption. J Clin Invest. 1966 Mar;45(3):388–398. doi: 10.1172/JCI105354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HOLDSWORTH C. D., DAWSON A. M. THE ABSORPTION OF MONOSACCHARIDES IN MAN. Clin Sci. 1964 Dec;27:371–379. [PubMed] [Google Scholar]
  10. Harris M. S., Dobbins J. W., Binder H. J. Augmentation of neutral sodium chloride absorption by increased flow rate in rat ileum in vivo. J Clin Invest. 1986 Aug;78(2):431–438. doi: 10.1172/JCI112594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoyumpa A. M., Jr, Nichols S., Schenker S., Wilson F. A. Thiamine transport in thiamine-deficient rats. Role of the unstirred water layer. Biochim Biophys Acta. 1976 Jun 17;436(2):438–447. doi: 10.1016/0005-2736(76)90206-6. [DOI] [PubMed] [Google Scholar]
  12. Johnson I. T., Gee J. M. Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut. 1981 May;22(5):398–403. doi: 10.1136/gut.22.5.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levitt M. D., Aufderheide T., Fetzer C. A., Bond J. H., Levitt D. G. Use of carbon monoxide to measure luminal stirring in the rat gut. J Clin Invest. 1984 Dec;74(6):2056–2064. doi: 10.1172/JCI111629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levitt M. D., Kneip J. M., Levitt D. G. Use of laminar flow and unstirred layer models to predict intestinal absorption in the rat. J Clin Invest. 1988 May;81(5):1365–1369. doi: 10.1172/JCI113464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lukie B. E., Westergaard H., Dietschy J. M. Validation of a chamber that allows measurement of both tissue uptake rates and unstirred layer thicknesses in the intestine under conditions of controlled stirring. Gastroenterology. 1974 Oct;67(4):652–661. [PubMed] [Google Scholar]
  16. doi: 10.1172/JCI105203. [DOI] [PMC free article] [Google Scholar]
  17. Read N. W., Barber D. C., Levin R. J., Holdsworth C. D. Unstirred layer and kinetics of electrogenic glucose absorption in the human jejunum in situ. Gut. 1977 Nov;18(11):865–876. doi: 10.1136/gut.18.11.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rey F., Drillet F., Schmitz J., Rey J. Influence of flow rate on the kinetics of the intestinal absorption of glucose and lysine in children. Gastroenterology. 1974 Jan;66(1):79–85. [PubMed] [Google Scholar]
  19. Ryu K. H., Grim E. Unstirred water layer in canine jejunum. Am J Physiol. 1982 Apr;242(4):G364–G369. doi: 10.1152/ajpgi.1982.242.4.G364. [DOI] [PubMed] [Google Scholar]
  20. Sallee V. L., Dietschy J. M. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J Lipid Res. 1973 Jul;14(4):475–484. [PubMed] [Google Scholar]
  21. Sladen G. E., Dawson A. M. Interrelationships between the absorptions of glucose, sodium and water by the normal human jejunum. Clin Sci. 1969 Feb;36(1):119–132. [PubMed] [Google Scholar]
  22. Smithson K. W., Millar D. B., Jacobs L. R., Gray G. M. Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat? Science. 1981 Dec 11;214(4526):1241–1244. doi: 10.1126/science.7302593. [DOI] [PubMed] [Google Scholar]
  23. Westergaard H., Dietschy J. M. Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J Clin Invest. 1974 Sep;54(3):718–732. doi: 10.1172/JCI107810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Westergaard H., Holtermüller K. H., Dietschy J. M. Measurement of resistance of barriers to solute transport in vivo in rat jejunum. Am J Physiol. 1986 Jun;250(6 Pt 1):G727–G735. doi: 10.1152/ajpgi.1986.250.6.G727. [DOI] [PubMed] [Google Scholar]
  25. Wilson F. A., Dietschy J. M. The intestinal unstirred layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta. 1974 Aug 21;363(1):112–126. doi: 10.1016/0005-2736(74)90010-8. [DOI] [PubMed] [Google Scholar]
  26. Winne D. Rat jejunum perfused in situ: effect of perfusion rate and intraluminal radius on absorption rate and effective unstirred layer thickness. Naunyn Schmiedebergs Arch Pharmacol. 1979 Jul;307(3):265–274. doi: 10.1007/BF00505943. [DOI] [PubMed] [Google Scholar]
  27. Winne D. The permeability coefficient of the wall of a villous membrane. J Math Biol. 1978 Jun 12;6(1):95–108. doi: 10.1007/BF02478521. [DOI] [PubMed] [Google Scholar]
  28. Winne D. Unstirred layer thickness in perfused rat jejunum in vivo. Experientia. 1976 Oct 15;32(10):1278–1279. doi: 10.1007/BF01953092. [DOI] [PubMed] [Google Scholar]
  29. Yuasa H., Iga T., Hanano M., Watanabe J. Comparative assessment of the resistance of the unstirred water layer to solute transport between two different intestinal perfusion systems. Biochim Biophys Acta. 1988 Feb 18;938(2):189–198. doi: 10.1016/0005-2736(88)90158-7. [DOI] [PubMed] [Google Scholar]
  30. Yuasa H., Miyamoto Y., Iga T., Hanano M. Determination of kinetic parameters of a carrier-mediated transport in the perfused intestine by two-dimensional laminar flow model: effects of the unstirred water layer. Biochim Biophys Acta. 1986 Apr 14;856(2):219–230. doi: 10.1016/0005-2736(86)90031-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES