Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):m366–m367. doi: 10.1107/S1600536809006898

(μ-3,4-Diacetyl­hexa-2,4-diene-2,5-diol­ato-κ4 O 2,O 3:O 4,O 5)bis­[aqua(1,10-phen­an­thro­line-κ2 N,N′)copper(II)] bis­(tetra­fluorid­oborate) monohydrate

Jorge A Tovilla a, Simón Hernández-Ortega a, Jesús Valdés-Martínez a,*
PMCID: PMC2969010  PMID: 21582322

Abstract

In the title compound, [Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O, the two Cu atoms are each chelated by the acetyl­acetonate unit of the 3,4-diacetyl­hexa-2,4-diene-2,5-diolate (tae) ligand. The Cu atoms are square-pyramidally penta­coordinated, with one bidentate 1,10-phenanthroline (phen) and the tae ligand basal and one water mol­ecule apical. The pyridyl rings of the phen ligands participate in π–π [centroid–centroid distance = 3.894 (3) Å] and C—H ⋯ π inter­actions, generating layers which are inter­connected through O—H⋯O and O—H⋯F hydrogen bonds between the water mol­ecules and the tetra­fluorido­borate anions. The F atoms of both tetra­fluorido­borate anions are each disordered over two positions of equal occupancy.

Related literature

For related Cu(II)–tae2−–diimine complexes, see: Shen et al. (1999a ,b ); Lim et al. (1994); Fukuda et al. (1994); Zhang et al. (1999). For other similar metal complexes, see: Zhang et al. (1998, 1999); Mei et al. (2006a ,b ).graphic file with name e-65-0m366-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O

  • M r = 911.35

  • Triclinic, Inline graphic

  • a = 11.5555 (9) Å

  • b = 12.0954 (9) Å

  • c = 15.4446 (12) Å

  • α = 67.654 (1)°

  • β = 78.890 (1)°

  • γ = 72.784 (1)°

  • V = 1899.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 298 K

  • 0.16 × 0.08 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.858, T max = 0.949

  • 15806 measured reflections

  • 6928 independent reflections

  • 3558 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.114

  • S = 0.84

  • 6928 reflections

  • 606 parameters

  • 326 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2009) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006898/ng2549sup1.cif

e-65-0m366-sup1.cif (35KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006898/ng2549Isup2.hkl

e-65-0m366-Isup2.hkl (339KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O2 1.886 (3)
Cu1—O1 1.892 (3)
Cu1—N2 2.008 (4)
Cu1—N1 2.013 (4)
Cu1—O5 2.320 (4)
Cu2—O3 1.884 (3)
Cu2—O4 1.895 (3)
Cu2—N4 1.990 (4)
Cu2—N3 2.004 (4)
Cu2—O6 2.363 (5)
O1—Cu1—N2 166.92 (15)
O2—Cu1—N1 171.40 (16)
O4—Cu2—N4 168.61 (17)
O3—Cu2—N3 172.57 (17)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯F1Ai 0.845 (11) 1.91 (2) 2.737 (11) 166 (8)
O7—H7A⋯F6A 0.850 (11) 1.90 (3) 2.728 (9) 164 (8)
O7—H7A⋯F7 0.850 (11) 1.99 (4) 2.782 (8) 155 (8)
O6—H6E⋯F4ii 0.852 (11) 2.054 (18) 2.898 (9) 171 (7)
O6—H6D⋯F2Aiii 0.852 (11) 2.080 (16) 2.930 (10) 175 (7)
O6—H6D⋯F2iii 0.852 (11) 1.90 (3) 2.694 (10) 155 (7)
O5—H5E⋯F3A 0.846 (11) 1.96 (2) 2.776 (8) 163 (6)
O5—H5D⋯O7iv 0.842 (11) 2.000 (15) 2.837 (7) 173 (6)
O7—H7A⋯F7 0.850 (11) 1.99 (4) 2.782 (8) 155 (8)
O7—H7A⋯F6A 0.850 (11) 1.90 (3) 2.728 (9) 164 (8)
C29—H29⋯Cgii 0.93 2.75 3.522 (7) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg is the centroid of the N1,C12,C11,C13,C21,C20 ring.

Acknowledgments

JAT thanks CONACYT for a postdoctoral position. We thank CSCI, Spain, for a licence to use the Cambridge Structural Database.

supplementary crystallographic information

Comment

The asymmetric structure of 1 consists of one dinuclear [(phen)(H2O)Cu(tae)Cu(H2O)(phen)]2+ complex cation, two disordered BF4- anions and a water molecule, where phen represents the 1,10-phenanthroline, and tae the 3,4-diacetylhexa-2,4-diene-2,5-diolate, see Figure 1. In the cation one Cu atom coordinates to each acac- moiety of the tae2-. The Cu atoms are pentacoordinated with one bidentate phen and one water molecule in addition to the tae2- ligand. The geometry around both Cu atoms is square pyramidal as indicated by the values of the τ parameter, 0.07 for both Cu1 and Cu2. The two acac moieties of the tae ligand deviate from the ideal geometry as indicated by the torsion angles C4—C3—C8—C7 and C2—C3—C8—C9, 99.9 (6) and 101.1 (6)°, respectively (ideal values 90°). The deviation of the ideal geometry is also reflected in the angle the central rings of the phen ligands C(14)—C(15)—C(22)—C(19)—C(20)—C(21) and C(26)—C(27)—C(34)—C(31)—C(32)—C(33) which has a value of 73.6 (3)°, ideal value 90°. The water molecule coordinated to Cu1 forms a hydrogen bond with the free water molecule, O(5) ···O(7) 2.835 (6) Å. In addition the three water molecules present interactions with the disordered BF4- anions. Two of the py rings of each phen ligands coordinated to the Cu1 present π-π interactions between them: N(1)—C(12)—C(11)—C(13)—C(21)—C(20) and N(2)—C(18)—C(17)—C(16)—C(22)—C(19)[2 - x,-y,2 - z], have centroid···centroid distance, Cg···Cg, of 3.894 (3) Å. H-bonded dimers are formed through C—H ··· π interactions between one py ring of the phen coordinated to Cu2 and a phen coordinated to Cu1, C(29)—H(29)···N(1)—C(12)—C(11)—C(13)—C(21)—C(20) [2 - x,1 - y,1 - z] with a C···Cg = 3.522 (7) Å, Figure 2.

Experimental

Copper(II) tetrafluoroborate hydrate (H2O-31.2%) (0.188 g, 0.69 mmol) was added to a freshly made mixture of 1,10-phenanthroline (0.124 g, 0.69 mmol) and tetraacetylethane (0.068 g, 0.34 mmol) in methanol (15 ml) to give a dark green-blue suspension. The reaction mixture was stirred for 3 hrs at 45°C in a water bath, firstly and then at room temperature overnight. The blue-green solid was recovered by filtration and it was air-dried. 12 mg of the product were suspended in acetone (1 ml) and water (ca 1 ml) was added in order to achieve complete dissolution. Crystals suitable for X-ray analysis were obtained after 2 weeks of slow evaporation.

Refinement

Both BF4- anions are disordered and were refined in two major contributors with s.o.f. 0.5. The H atoms on O atoms were located in the Fourier map and refined with U(iso)= 1.5Ueq(H2O). H on C atoms were fixed geometrically and treated as riding with 0.96Å (methyl) and 0.93Å (aromatic) with Uiso(H)= 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the cation in (1), showing the atom- labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

View of the molecular packing in (1).

Crystal data

[Cu2(C10H12O4)(C12H8N2)2(H2O)2](BF4)2·H2O Z = 2
Mr = 911.35 F(000) = 924
Triclinic, P1 Dx = 1.594 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.5555 (9) Å Cell parameters from 3675 reflections
b = 12.0954 (9) Å θ = 2.2–24.9°
c = 15.4446 (12) Å µ = 1.21 mm1
α = 67.654 (1)° T = 298 K
β = 78.890 (1)° Prism, green
γ = 72.784 (1)° 0.16 × 0.08 × 0.04 mm
V = 1899.2 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 6928 independent reflections
Radiation source: fine-focus sealed tube 3558 reflections with I > 2σ(I)
graphite Rint = 0.059
Detector resolution: 0.83 pixels mm-1 θmax = 25.4°, θmin = 1.9°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.858, Tmax = 0.949 l = −18→18
15806 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0366P)2] where P = (Fo2 + 2Fc2)/3
6928 reflections (Δ/σ)max = 0.001
606 parameters Δρmax = 0.54 e Å3
326 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.99590 (6) 0.18154 (5) 0.85485 (4) 0.0390 (2)
Cu2 0.65472 (6) 0.87240 (6) 0.61594 (5) 0.0491 (2)
O1 0.8415 (3) 0.2366 (3) 0.8079 (2) 0.0404 (9)
O2 0.9820 (3) 0.3323 (3) 0.8705 (2) 0.0468 (10)
O3 0.7359 (3) 0.7405 (3) 0.5728 (2) 0.0445 (10)
O4 0.6140 (3) 0.7653 (3) 0.7374 (2) 0.0515 (10)
O5 1.1038 (4) 0.2306 (4) 0.7078 (3) 0.0604 (11)
H5D 1.115 (6) 0.301 (3) 0.693 (4) 0.091*
H5E 1.049 (4) 0.241 (6) 0.674 (4) 0.091*
O6 0.8423 (5) 0.8930 (4) 0.6395 (4) 0.0763 (13)
H6D 0.835 (7) 0.968 (2) 0.632 (5) 0.114*
H6E 0.904 (4) 0.849 (6) 0.618 (5) 0.114*
O7 0.1659 (5) 0.4582 (5) 0.6594 (4) 0.0931 (15)
H7A 0.194 (7) 0.456 (8) 0.707 (4) 0.140*
H7B 0.184 (7) 0.521 (5) 0.618 (4) 0.140*
N1 1.0160 (4) 0.0087 (3) 0.8585 (3) 0.0374 (11)
N2 1.1408 (4) 0.0983 (4) 0.9301 (3) 0.0368 (11)
N3 0.5590 (4) 1.0233 (4) 0.6458 (3) 0.0490 (12)
N4 0.6619 (4) 0.9957 (4) 0.4867 (3) 0.0485 (12)
C1 0.6712 (5) 0.3667 (5) 0.7313 (4) 0.0523 (16)
H1A 0.6628 0.2878 0.7364 0.078*
H1B 0.6768 0.4177 0.6662 0.078*
H1C 0.6016 0.4055 0.7640 0.078*
C2 0.7842 (4) 0.3498 (5) 0.7739 (3) 0.0348 (13)
C3 0.8174 (5) 0.4515 (4) 0.7750 (3) 0.0348 (13)
C4 0.9136 (5) 0.4354 (5) 0.8251 (4) 0.0396 (14)
C5 0.9433 (5) 0.5441 (5) 0.8342 (4) 0.0616 (18)
H5A 1.0111 0.5151 0.8712 0.092*
H5B 0.8740 0.5870 0.8644 0.092*
H5C 0.9635 0.5990 0.7729 0.092*
C6 0.8686 (5) 0.5545 (5) 0.5733 (4) 0.0555 (17)
H6A 0.8767 0.6032 0.5078 0.083*
H6B 0.8397 0.4845 0.5806 0.083*
H6C 0.9463 0.5268 0.5981 0.083*
C7 0.7798 (5) 0.6312 (5) 0.6254 (4) 0.0406 (14)
C8 0.7509 (4) 0.5814 (4) 0.7219 (4) 0.0356 (13)
C9 0.6633 (5) 0.6503 (5) 0.7713 (4) 0.0425 (14)
C10 0.6193 (5) 0.5913 (5) 0.8720 (3) 0.0569 (17)
H10A 0.5594 0.6520 0.8933 0.085*
H10B 0.6866 0.5578 0.9100 0.085*
H10C 0.5838 0.5264 0.8772 0.085*
C11 0.9811 (6) −0.1545 (5) 0.8256 (4) 0.0592 (17)
H11 0.9341 −0.1807 0.7984 0.071*
C12 0.9525 (5) −0.0316 (5) 0.8195 (4) 0.0507 (16)
H12 0.8868 0.0236 0.7871 0.061*
C13 1.0777 (6) −0.2358 (5) 0.8714 (4) 0.0574 (17)
H13 1.0963 −0.3180 0.8763 0.069*
C14 1.2556 (6) −0.2718 (5) 0.9568 (4) 0.0529 (16)
H14 1.2809 −0.3543 0.9616 0.064*
C15 1.3201 (5) −0.2274 (5) 0.9931 (4) 0.0503 (16)
H15 1.3892 −0.2794 1.0226 0.060*
C16 1.3461 (5) −0.0469 (5) 1.0248 (4) 0.0529 (16)
H16 1.4143 −0.0943 1.0572 0.063*
C17 1.3051 (5) 0.0741 (6) 1.0134 (4) 0.0594 (17)
H17 1.3457 0.1106 1.0373 0.071*
C18 1.2015 (5) 0.1449 (5) 0.9657 (4) 0.0490 (15)
H18 1.1747 0.2280 0.9589 0.059*
C19 1.1824 (5) −0.0245 (4) 0.9411 (3) 0.0346 (13)
C20 1.1134 (5) −0.0718 (4) 0.9031 (3) 0.0348 (13)
C21 1.1489 (5) −0.1963 (5) 0.9111 (4) 0.0427 (14)
C22 1.2846 (5) −0.1003 (5) 0.9872 (4) 0.0425 (14)
C23 0.5072 (6) 1.0331 (6) 0.7278 (5) 0.0693 (19)
H23 0.5129 0.9621 0.7809 0.083*
C24 0.4450 (6) 1.1451 (6) 0.7371 (5) 0.082 (2)
H24 0.4086 1.1488 0.7955 0.098*
C25 0.4372 (6) 1.2499 (6) 0.6606 (6) 0.077 (2)
H25 0.3957 1.3256 0.6666 0.093*
C26 0.4903 (6) 1.3473 (6) 0.4869 (6) 0.076 (2)
H26 0.4489 1.4258 0.4873 0.092*
C27 0.5463 (6) 1.3346 (6) 0.4065 (5) 0.072 (2)
H27 0.5465 1.4043 0.3529 0.087*
C28 0.6657 (6) 1.1947 (6) 0.3192 (5) 0.076 (2)
H28 0.6674 1.2605 0.2631 0.091*
C29 0.7220 (6) 1.0756 (6) 0.3223 (5) 0.080 (2)
H29 0.7620 1.0605 0.2681 0.096*
C30 0.7183 (5) 0.9776 (6) 0.4079 (4) 0.0602 (17)
H30 0.7564 0.8976 0.4095 0.072*
C31 0.6061 (5) 1.1119 (5) 0.4834 (4) 0.0475 (15)
C32 0.5494 (5) 1.1274 (5) 0.5703 (4) 0.0458 (15)
C33 0.4910 (5) 1.2440 (6) 0.5738 (5) 0.0595 (18)
C34 0.6068 (6) 1.2147 (5) 0.4007 (5) 0.0570 (17)
B1 0.8838 (5) 0.2213 (5) 0.5346 (4) 0.101 (2)
F1 0.8098 (11) 0.3342 (7) 0.5272 (7) 0.138 (4) 0.50
F2 0.8189 (11) 0.1382 (9) 0.5615 (8) 0.145 (5) 0.50
F3 0.9664 (10) 0.1914 (12) 0.5938 (8) 0.165 (5) 0.50
F4 0.9393 (10) 0.2322 (10) 0.4465 (5) 0.152 (4) 0.50
F1A 0.8141 (11) 0.3279 (8) 0.4850 (7) 0.145 (5) 0.50
F2A 0.8125 (10) 0.1552 (9) 0.6042 (6) 0.109 (3) 0.50
F3A 0.9625 (9) 0.2425 (12) 0.5766 (8) 0.135 (4) 0.50
F4A 0.9420 (11) 0.1540 (10) 0.4814 (7) 0.180 (5) 0.50
B2 0.3294 (4) 0.4202 (4) 0.8750 (3) 0.0641 (16)
F5 0.2337 (8) 0.4460 (12) 0.9365 (7) 0.091 (4) 0.50
F6 0.4163 (9) 0.3279 (7) 0.9241 (7) 0.100 (3) 0.50
F7 0.2957 (9) 0.3809 (7) 0.8148 (5) 0.098 (3) 0.50
F8 0.3687 (11) 0.5225 (8) 0.8272 (6) 0.123 (4) 0.50
F5A 0.2328 (8) 0.4162 (13) 0.9389 (8) 0.098 (4) 0.50
F6A 0.2915 (10) 0.4675 (10) 0.7880 (5) 0.149 (4) 0.50
F7A 0.3964 (9) 0.4925 (8) 0.8799 (7) 0.103 (3) 0.50
F8A 0.4019 (9) 0.3057 (6) 0.8903 (8) 0.102 (3) 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0431 (4) 0.0245 (4) 0.0444 (4) −0.0034 (3) −0.0095 (3) −0.0074 (3)
Cu2 0.0615 (5) 0.0320 (4) 0.0425 (4) −0.0019 (4) −0.0037 (4) −0.0083 (3)
O1 0.043 (2) 0.0210 (19) 0.052 (2) −0.0037 (17) −0.0079 (19) −0.0084 (18)
O2 0.051 (2) 0.031 (2) 0.057 (2) −0.0017 (18) −0.019 (2) −0.0131 (19)
O3 0.066 (3) 0.025 (2) 0.033 (2) −0.0038 (19) −0.0013 (19) −0.0074 (17)
O4 0.066 (3) 0.026 (2) 0.040 (2) 0.0045 (19) 0.009 (2) −0.0058 (18)
O5 0.064 (3) 0.057 (3) 0.056 (3) −0.019 (3) −0.003 (2) −0.012 (3)
O6 0.083 (4) 0.069 (3) 0.081 (3) −0.018 (3) −0.017 (3) −0.026 (3)
O7 0.110 (4) 0.082 (4) 0.092 (4) −0.029 (3) −0.034 (4) −0.019 (3)
N1 0.045 (3) 0.025 (2) 0.037 (3) −0.005 (2) −0.008 (2) −0.005 (2)
N2 0.039 (3) 0.030 (3) 0.038 (3) −0.008 (2) −0.004 (2) −0.009 (2)
N3 0.054 (3) 0.039 (3) 0.046 (3) 0.000 (2) 0.002 (3) −0.018 (3)
N4 0.053 (3) 0.037 (3) 0.044 (3) −0.005 (2) −0.003 (3) −0.006 (2)
C1 0.047 (4) 0.038 (3) 0.070 (4) −0.004 (3) −0.020 (3) −0.014 (3)
C2 0.031 (3) 0.037 (3) 0.034 (3) −0.007 (3) −0.003 (3) −0.010 (3)
C3 0.041 (3) 0.025 (3) 0.034 (3) −0.005 (3) −0.007 (3) −0.006 (2)
C4 0.048 (4) 0.025 (3) 0.044 (3) −0.004 (3) −0.004 (3) −0.013 (3)
C5 0.064 (4) 0.039 (3) 0.088 (5) 0.000 (3) −0.029 (4) −0.028 (3)
C6 0.071 (4) 0.040 (3) 0.045 (4) −0.009 (3) 0.006 (3) −0.012 (3)
C7 0.040 (3) 0.031 (3) 0.048 (4) −0.008 (3) −0.002 (3) −0.012 (3)
C8 0.037 (3) 0.025 (3) 0.037 (3) −0.002 (2) −0.003 (3) −0.006 (3)
C9 0.047 (4) 0.034 (3) 0.039 (3) −0.006 (3) −0.010 (3) −0.006 (3)
C10 0.061 (4) 0.040 (3) 0.043 (4) 0.002 (3) 0.004 (3) −0.001 (3)
C11 0.085 (5) 0.039 (4) 0.061 (4) −0.019 (4) −0.021 (4) −0.017 (3)
C12 0.063 (4) 0.036 (3) 0.050 (4) −0.009 (3) −0.021 (3) −0.007 (3)
C13 0.084 (5) 0.027 (3) 0.055 (4) −0.008 (3) −0.011 (4) −0.010 (3)
C14 0.067 (5) 0.028 (3) 0.048 (4) 0.008 (3) −0.005 (3) −0.011 (3)
C15 0.044 (4) 0.039 (4) 0.046 (4) 0.008 (3) −0.006 (3) −0.005 (3)
C16 0.043 (4) 0.049 (4) 0.052 (4) −0.003 (3) −0.016 (3) −0.002 (3)
C17 0.060 (4) 0.060 (4) 0.063 (4) −0.023 (4) −0.022 (4) −0.013 (4)
C18 0.051 (4) 0.040 (3) 0.054 (4) −0.013 (3) −0.009 (3) −0.011 (3)
C19 0.039 (3) 0.027 (3) 0.030 (3) −0.005 (3) −0.002 (3) −0.004 (3)
C20 0.044 (4) 0.023 (3) 0.029 (3) −0.003 (3) −0.004 (3) −0.003 (2)
C21 0.058 (4) 0.029 (3) 0.038 (3) −0.007 (3) −0.004 (3) −0.012 (3)
C22 0.037 (3) 0.038 (3) 0.040 (3) −0.007 (3) −0.004 (3) −0.002 (3)
C23 0.085 (5) 0.060 (4) 0.054 (4) −0.002 (4) −0.001 (4) −0.024 (4)
C24 0.089 (6) 0.072 (5) 0.083 (6) 0.012 (4) −0.002 (5) −0.053 (5)
C25 0.071 (5) 0.049 (4) 0.110 (6) 0.008 (4) −0.013 (5) −0.040 (5)
C26 0.071 (5) 0.033 (4) 0.118 (7) 0.002 (4) −0.027 (5) −0.020 (5)
C27 0.069 (5) 0.045 (4) 0.081 (5) −0.004 (4) −0.022 (4) 0.002 (4)
C28 0.085 (5) 0.057 (5) 0.053 (5) −0.012 (4) −0.007 (4) 0.012 (4)
C29 0.099 (6) 0.069 (5) 0.047 (4) −0.016 (5) 0.002 (4) −0.001 (4)
C30 0.069 (5) 0.053 (4) 0.049 (4) −0.013 (3) −0.003 (4) −0.009 (4)
C31 0.038 (4) 0.032 (3) 0.063 (4) −0.003 (3) −0.011 (3) −0.008 (3)
C32 0.046 (4) 0.031 (3) 0.055 (4) −0.006 (3) −0.009 (3) −0.010 (3)
C33 0.050 (4) 0.044 (4) 0.082 (5) 0.007 (3) −0.018 (4) −0.026 (4)
C34 0.060 (4) 0.041 (4) 0.057 (4) −0.007 (3) −0.017 (4) −0.002 (4)
B1 0.135 (6) 0.089 (4) 0.110 (5) −0.047 (4) −0.019 (4) −0.051 (4)
F1 0.226 (9) 0.086 (5) 0.115 (9) −0.035 (5) −0.001 (7) −0.059 (6)
F2 0.162 (8) 0.095 (6) 0.222 (11) −0.062 (6) −0.044 (8) −0.068 (7)
F3 0.184 (8) 0.193 (11) 0.126 (7) −0.122 (7) −0.059 (6) 0.014 (8)
F4 0.147 (8) 0.162 (10) 0.122 (6) 0.018 (7) −0.011 (5) −0.064 (7)
F1A 0.203 (9) 0.121 (6) 0.101 (9) −0.027 (6) −0.052 (7) −0.018 (5)
F2A 0.136 (7) 0.086 (6) 0.138 (7) −0.059 (5) −0.006 (5) −0.054 (5)
F3A 0.173 (8) 0.131 (9) 0.125 (8) −0.098 (6) −0.050 (6) −0.008 (6)
F4A 0.206 (10) 0.175 (10) 0.196 (10) −0.052 (8) 0.043 (8) −0.130 (8)
B2 0.077 (4) 0.059 (4) 0.067 (4) −0.019 (3) −0.012 (3) −0.029 (3)
F5 0.087 (6) 0.099 (8) 0.100 (6) −0.014 (5) 0.005 (4) −0.062 (5)
F6 0.084 (5) 0.096 (6) 0.116 (8) 0.004 (5) −0.046 (5) −0.035 (5)
F7 0.139 (7) 0.092 (6) 0.084 (6) −0.009 (5) −0.039 (5) −0.052 (5)
F8 0.173 (8) 0.087 (5) 0.102 (8) −0.066 (5) 0.002 (6) −0.008 (5)
F5A 0.083 (6) 0.094 (7) 0.135 (6) −0.034 (5) 0.024 (5) −0.065 (6)
F6A 0.185 (8) 0.168 (9) 0.091 (5) −0.042 (8) −0.071 (5) −0.014 (6)
F7A 0.122 (7) 0.117 (7) 0.116 (8) −0.074 (6) 0.019 (6) −0.071 (6)
F8A 0.105 (7) 0.063 (4) 0.131 (8) −0.008 (4) 0.007 (5) −0.043 (5)

Geometric parameters (Å, °)

Cu1—O2 1.886 (3) C13—C21 1.389 (7)
Cu1—O1 1.892 (3) C13—H13 0.9300
Cu1—N2 2.008 (4) C14—C15 1.336 (7)
Cu1—N1 2.013 (4) C14—C21 1.425 (7)
Cu1—O5 2.320 (4) C14—H14 0.9300
Cu2—O3 1.884 (3) C15—C22 1.440 (7)
Cu2—O4 1.895 (3) C15—H15 0.9300
Cu2—N4 1.990 (4) C16—C17 1.350 (7)
Cu2—N3 2.004 (4) C16—C22 1.407 (7)
Cu2—O6 2.363 (5) C16—H16 0.9300
O1—C2 1.281 (5) C17—C18 1.401 (7)
O2—C4 1.280 (5) C17—H17 0.9300
O3—C7 1.269 (5) C18—H18 0.9300
O4—C9 1.274 (5) C19—C22 1.389 (6)
O5—H5D 0.842 (11) C19—C20 1.419 (7)
O5—H5E 0.846 (11) C20—C21 1.402 (6)
O6—H6D 0.852 (11) C23—C24 1.380 (7)
O6—H6E 0.852 (11) C23—H23 0.9300
O7—H7A 0.850 (11) C24—C25 1.359 (8)
O7—H7B 0.845 (11) C24—H24 0.9300
N1—C12 1.320 (6) C25—C33 1.384 (8)
N1—C20 1.353 (6) C25—H25 0.9300
N2—C18 1.316 (6) C26—C27 1.327 (8)
N2—C19 1.372 (6) C26—C33 1.445 (8)
N3—C23 1.325 (7) C26—H26 0.9300
N3—C32 1.345 (6) C27—C34 1.441 (8)
N4—C30 1.329 (6) C27—H27 0.9300
N4—C31 1.348 (6) C28—C34 1.381 (8)
C1—C2 1.501 (6) C28—C29 1.380 (8)
C1—H1A 0.9600 C28—H28 0.9300
C1—H1B 0.9600 C29—C30 1.405 (7)
C1—H1C 0.9600 C29—H29 0.9300
C2—C3 1.399 (6) C30—H30 0.9300
C3—C4 1.401 (7) C31—C34 1.404 (7)
C3—C8 1.510 (6) C31—C32 1.429 (7)
C4—C5 1.513 (6) C32—C33 1.388 (7)
C5—H5A 0.9600 B1—F3 1.326 (6)
C5—H5B 0.9600 B1—F2 1.325 (6)
C5—H5C 0.9600 B1—F4A 1.328 (6)
C6—C7 1.499 (6) B1—F1A 1.330 (6)
C6—H6A 0.9600 B1—F3A 1.343 (6)
C6—H6B 0.9600 B1—F1 1.356 (6)
C6—H6C 0.9600 B1—F4 1.363 (6)
C7—C8 1.392 (7) B1—F2A 1.367 (6)
C8—C9 1.411 (6) B2—F8 1.338 (5)
C9—C10 1.501 (7) B2—F5A 1.340 (5)
C10—H10A 0.9600 B2—F8A 1.347 (6)
C10—H10B 0.9600 B2—F6 1.347 (5)
C10—H10C 0.9600 B2—F6A 1.349 (5)
C11—C13 1.356 (7) B2—F7 1.351 (5)
C11—C12 1.394 (7) B2—F5 1.357 (6)
C11—H11 0.9300 B2—F7A 1.358 (5)
C12—H12 0.9300
O2—Cu1—O1 92.75 (14) C11—C13—C21 120.1 (5)
O2—Cu1—N2 91.77 (16) C11—C13—H13 119.9
O1—Cu1—N2 166.92 (15) C21—C13—H13 119.9
O2—Cu1—N1 171.40 (16) C15—C14—C21 121.8 (5)
O1—Cu1—N1 92.39 (16) C15—C14—H14 119.1
N2—Cu1—N1 81.76 (17) C21—C14—H14 119.1
O2—Cu1—O5 95.44 (15) C14—C15—C22 121.1 (5)
O1—Cu1—O5 95.00 (14) C14—C15—H15 119.5
N2—Cu1—O5 96.78 (16) C22—C15—H15 119.5
N1—Cu1—O5 90.97 (16) C17—C16—C22 119.2 (5)
O3—Cu2—O4 92.78 (14) C17—C16—H16 120.4
O3—Cu2—N4 92.05 (17) C22—C16—H16 120.4
O4—Cu2—N4 168.61 (17) C16—C17—C18 120.3 (5)
O3—Cu2—N3 172.57 (17) C16—C17—H17 119.9
O4—Cu2—N3 92.64 (17) C18—C17—H17 119.9
N4—Cu2—N3 81.72 (19) N2—C18—C17 122.4 (5)
O3—Cu2—O6 90.72 (16) N2—C18—H18 118.8
O4—Cu2—O6 99.97 (17) C17—C18—H18 118.8
N4—Cu2—O6 90.27 (18) N2—C19—C22 123.3 (5)
N3—Cu2—O6 93.34 (17) N2—C19—C20 115.9 (4)
C2—O1—Cu1 124.8 (3) C22—C19—C20 120.9 (5)
C4—O2—Cu1 124.3 (3) N1—C20—C21 123.1 (5)
C7—O3—Cu2 124.7 (3) N1—C20—C19 117.0 (4)
C9—O4—Cu2 125.4 (3) C21—C20—C19 119.9 (5)
Cu1—O5—H5D 108 (5) C13—C21—C20 116.7 (5)
Cu1—O5—H5E 100 (4) C13—C21—C14 125.0 (5)
H5D—O5—H5E 105 (6) C20—C21—C14 118.3 (5)
Cu2—O6—H6D 109 (5) C19—C22—C16 117.3 (5)
Cu2—O6—H6E 114 (5) C19—C22—C15 118.1 (5)
H6D—O6—H6E 124 (7) C16—C22—C15 124.7 (5)
H7A—O7—H7B 102 (8) N3—C23—C24 122.2 (6)
C12—N1—C20 118.4 (4) N3—C23—H23 118.9
C12—N1—Cu1 128.9 (4) C24—C23—H23 118.9
C20—N1—Cu1 112.6 (3) C25—C24—C23 119.7 (6)
C18—N2—C19 117.6 (5) C25—C24—H24 120.2
C18—N2—Cu1 129.7 (4) C23—C24—H24 120.2
C19—N2—Cu1 112.6 (3) C24—C25—C33 120.0 (6)
C23—N3—C32 117.7 (5) C24—C25—H25 120.0
C23—N3—Cu2 129.2 (4) C33—C25—H25 120.0
C32—N3—Cu2 113.1 (4) C27—C26—C33 122.6 (6)
C30—N4—C31 118.5 (5) C27—C26—H26 118.7
C30—N4—Cu2 128.5 (4) C33—C26—H26 118.7
C31—N4—Cu2 113.0 (4) C26—C27—C34 121.1 (6)
C2—C1—H1A 109.5 C26—C27—H27 119.4
C2—C1—H1B 109.5 C34—C27—H27 119.4
H1A—C1—H1B 109.5 C34—C28—C29 119.2 (6)
C2—C1—H1C 109.5 C34—C28—H28 120.4
H1A—C1—H1C 109.5 C29—C28—H28 120.4
H1B—C1—H1C 109.5 C28—C29—C30 119.4 (6)
O1—C2—C3 126.3 (5) C28—C29—H29 120.3
O1—C2—C1 113.0 (4) C30—C29—H29 120.3
C3—C2—C1 120.7 (4) N4—C30—C29 122.0 (6)
C2—C3—C4 120.8 (4) N4—C30—H30 119.0
C2—C3—C8 121.0 (5) C29—C30—H30 119.0
C4—C3—C8 118.2 (4) N4—C31—C34 122.8 (6)
O2—C4—C3 126.2 (5) N4—C31—C32 116.6 (5)
O2—C4—C5 112.3 (5) C34—C31—C32 120.6 (5)
C3—C4—C5 121.4 (5) N3—C32—C33 123.8 (6)
C4—C5—H5A 109.5 N3—C32—C31 115.6 (5)
C4—C5—H5B 109.5 C33—C32—C31 120.6 (6)
H5A—C5—H5B 109.5 C25—C33—C32 116.6 (6)
C4—C5—H5C 109.5 C25—C33—C26 126.0 (6)
H5A—C5—H5C 109.5 C32—C33—C26 117.4 (6)
H5B—C5—H5C 109.5 C28—C34—C31 118.2 (6)
C7—C6—H6A 109.5 C28—C34—C27 124.2 (6)
C7—C6—H6B 109.5 C31—C34—C27 117.7 (6)
H6A—C6—H6B 109.5 F1—B1—F4 105.4 (5)
C7—C6—H6C 109.5 F2—B1—F1 110.2 (5)
H6A—C6—H6C 109.5 F2—B1—F4 109.7 (6)
H6B—C6—H6C 109.5 F3—B1—F4 109.9 (6)
O3—C7—C8 125.9 (5) F3—B1—F1 110.2 (6)
O3—C7—C6 113.3 (5) F3—B1—F2 111.4 (6)
C8—C7—C6 120.8 (5) F4A—B1—F1A 111.5 (5)
C7—C8—C9 121.6 (5) F4A—B1—F3A 111.0 (6)
C7—C8—C3 119.1 (5) F1A—B1—F3A 109.8 (6)
C9—C8—C3 119.3 (5) F4A—B1—F2A 107.9 (6)
O4—C9—C8 125.1 (5) F1A—B1—F2A 109.2 (6)
O4—C9—C10 113.5 (5) F3A—B1—F2A 107.2 (5)
C8—C9—C10 121.4 (5) F6—B2—F7 107.9 (5)
C9—C10—H10A 109.5 F6—B2—F5 108.2 (5)
C9—C10—H10B 109.5 F7—B2—F5 110.3 (7)
H10A—C10—H10B 109.5 F8—B2—F7 109.9 (5)
C9—C10—H10C 109.5 F8—B2—F6 112.0 (6)
H10A—C10—H10C 109.5 F8—B2—F5 108.6 (6)
H10B—C10—H10C 109.5 F5A—B2—F8A 109.6 (5)
C13—C11—C12 119.8 (5) F5A—B2—F6A 109.5 (6)
C13—C11—H11 120.1 F8A—B2—F6A 110.4 (6)
C12—C11—H11 120.1 F5A—B2—F7A 111.7 (7)
N1—C12—C11 121.9 (5) F8A—B2—F7A 107.8 (5)
N1—C12—H12 119.1 F6A—B2—F7A 107.8 (5)
C11—C12—H12 119.1
O2—Cu1—O1—C2 19.5 (4) C13—C11—C12—N1 −1.0 (9)
N2—Cu1—O1—C2 129.6 (7) C12—C11—C13—C21 −0.8 (9)
N1—Cu1—O1—C2 −167.4 (4) C21—C14—C15—C22 −0.1 (9)
O5—Cu1—O1—C2 −76.2 (4) C22—C16—C17—C18 0.8 (9)
O1—Cu1—O2—C4 −23.7 (4) C19—N2—C18—C17 0.0 (8)
N2—Cu1—O2—C4 168.6 (4) Cu1—N2—C18—C17 −177.0 (4)
O5—Cu1—O2—C4 71.6 (4) C16—C17—C18—N2 −0.3 (9)
O4—Cu2—O3—C7 −22.8 (4) C18—N2—C19—C22 −0.2 (7)
N4—Cu2—O3—C7 167.5 (4) Cu1—N2—C19—C22 177.3 (4)
O6—Cu2—O3—C7 77.2 (4) C18—N2—C19—C20 179.0 (4)
O3—Cu2—O4—C9 16.7 (5) Cu1—N2—C19—C20 −3.5 (5)
N4—Cu2—O4—C9 131.7 (8) C12—N1—C20—C21 −1.0 (7)
N3—Cu2—O4—C9 −168.4 (5) Cu1—N1—C20—C21 −177.3 (4)
O6—Cu2—O4—C9 −74.5 (5) C12—N1—C20—C19 177.7 (5)
O1—Cu1—N1—C12 13.4 (5) Cu1—N1—C20—C19 1.4 (6)
N2—Cu1—N1—C12 −178.3 (5) N2—C19—C20—N1 1.4 (7)
O5—Cu1—N1—C12 −81.6 (5) C22—C19—C20—N1 −179.3 (4)
O1—Cu1—N1—C20 −170.8 (3) N2—C19—C20—C21 −179.9 (4)
N2—Cu1—N1—C20 −2.5 (3) C22—C19—C20—C21 −0.6 (7)
O5—Cu1—N1—C20 94.2 (3) C11—C13—C21—C20 1.7 (8)
O2—Cu1—N2—C18 −5.3 (5) C11—C13—C21—C14 −176.9 (5)
O1—Cu1—N2—C18 −115.5 (7) N1—C20—C21—C13 −0.8 (8)
N1—Cu1—N2—C18 −179.6 (5) C19—C20—C21—C13 −179.4 (5)
O5—Cu1—N2—C18 90.4 (5) N1—C20—C21—C14 177.9 (5)
O2—Cu1—N2—C19 177.5 (3) C19—C20—C21—C14 −0.7 (7)
O1—Cu1—N2—C19 67.3 (8) C15—C14—C21—C13 179.7 (5)
N1—Cu1—N2—C19 3.2 (3) C15—C14—C21—C20 1.1 (8)
O5—Cu1—N2—C19 −86.8 (3) N2—C19—C22—C16 0.8 (8)
O4—Cu2—N3—C23 9.3 (5) C20—C19—C22—C16 −178.5 (5)
N4—Cu2—N3—C23 179.3 (6) N2—C19—C22—C15 −179.2 (4)
O6—Cu2—N3—C23 −90.9 (5) C20—C19—C22—C15 1.6 (7)
O4—Cu2—N3—C32 −171.6 (4) C17—C16—C22—C19 −1.0 (8)
N4—Cu2—N3—C32 −1.5 (4) C17—C16—C22—C15 178.9 (5)
O6—Cu2—N3—C32 88.3 (4) C14—C15—C22—C19 −1.2 (8)
O3—Cu2—N4—C30 −5.9 (5) C14—C15—C22—C16 178.8 (5)
O4—Cu2—N4—C30 −121.0 (9) C32—N3—C23—C24 0.0 (9)
N3—Cu2—N4—C30 178.1 (5) Cu2—N3—C23—C24 179.1 (5)
O6—Cu2—N4—C30 84.8 (5) N3—C23—C24—C25 −0.9 (11)
O3—Cu2—N4—C31 177.7 (4) C23—C24—C25—C33 0.3 (11)
O4—Cu2—N4—C31 62.6 (10) C33—C26—C27—C34 3.0 (11)
N3—Cu2—N4—C31 1.7 (4) C34—C28—C29—C30 −0.1 (11)
O6—Cu2—N4—C31 −91.6 (4) C31—N4—C30—C29 0.5 (9)
Cu1—O1—C2—C3 −7.8 (7) Cu2—N4—C30—C29 −175.7 (5)
Cu1—O1—C2—C1 172.9 (3) C28—C29—C30—N4 0.0 (10)
O1—C2—C3—C4 −7.5 (8) C30—N4—C31—C34 −1.0 (8)
C1—C2—C3—C4 171.7 (5) Cu2—N4—C31—C34 175.7 (4)
O1—C2—C3—C8 172.2 (5) C30—N4—C31—C32 −178.5 (5)
C1—C2—C3—C8 −8.6 (7) Cu2—N4—C31—C32 −1.7 (6)
Cu1—O2—C4—C3 16.7 (7) C23—N3—C32—C33 1.5 (9)
Cu1—O2—C4—C5 −166.0 (3) Cu2—N3—C32—C33 −177.7 (5)
C2—C3—C4—O2 2.6 (8) C23—N3—C32—C31 −179.7 (5)
C8—C3—C4—O2 −177.1 (5) Cu2—N3—C32—C31 1.1 (6)
C2—C3—C4—C5 −174.4 (5) N4—C31—C32—N3 0.4 (8)
C8—C3—C4—C5 5.9 (7) C34—C31—C32—N3 −177.1 (5)
Cu2—O3—C7—C8 17.2 (8) N4—C31—C32—C33 179.2 (5)
Cu2—O3—C7—C6 −163.6 (3) C34—C31—C32—C33 1.8 (9)
O3—C7—C8—C9 2.2 (9) C24—C25—C33—C32 1.1 (10)
C6—C7—C8—C9 −176.9 (5) C24—C25—C33—C26 −179.9 (6)
O3—C7—C8—C3 −176.4 (5) N3—C32—C33—C25 −2.1 (9)
C6—C7—C8—C3 4.5 (8) C31—C32—C33—C25 179.1 (5)
C2—C3—C8—C7 −79.9 (6) N3—C32—C33—C26 178.8 (5)
C4—C3—C8—C7 99.8 (6) C31—C32—C33—C26 0.0 (9)
C2—C3—C8—C9 101.5 (6) C27—C26—C33—C25 178.5 (7)
C4—C3—C8—C9 −78.8 (6) C27—C26—C33—C32 −2.5 (10)
Cu2—O4—C9—C8 −4.4 (8) C29—C28—C34—C31 −0.4 (10)
Cu2—O4—C9—C10 175.4 (3) C29—C28—C34—C27 179.2 (6)
C7—C8—C9—O4 −9.1 (9) N4—C31—C34—C28 1.0 (9)
C3—C8—C9—O4 169.5 (5) C32—C31—C34—C28 178.3 (6)
C7—C8—C9—C10 171.0 (5) N4—C31—C34—C27 −178.6 (5)
C3—C8—C9—C10 −10.4 (8) C32—C31—C34—C27 −1.3 (8)
C20—N1—C12—C11 1.9 (8) C26—C27—C34—C28 179.3 (7)
Cu1—N1—C12—C11 177.5 (4) C26—C27—C34—C31 −1.1 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7B···F1Ai 0.85 (1) 1.91 (2) 2.737 (11) 166 (8)
O7—H7A···F6A 0.85 (1) 1.90 (3) 2.728 (9) 164 (8)
O7—H7A···F7 0.85 (1) 1.99 (4) 2.782 (8) 155 (8)
O6—H6E···F4ii 0.85 (1) 2.05 (2) 2.898 (9) 171 (7)
O6—H6D···F2Aiii 0.85 (1) 2.08 (2) 2.930 (10) 175 (7)
O6—H6D···F2iii 0.85 (1) 1.90 (3) 2.694 (10) 155 (7)
O5—H5E···F3A 0.85 (1) 1.96 (2) 2.776 (8) 163 (6)
O5—H5D···O7iv 0.84 (1) 2.00 (2) 2.837 (7) 173 (6)
O7—H7A···F7 0.85 (1) 1.99 (4) 2.782 (8) 155 (8)
O7—H7A···F6A 0.85 (1) 1.90 (3) 2.728 (9) 164 (8)
C29—H29···Cgii 0.93 2.75 3.522 (7) 141

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2549).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Barbour, J. L. (2001). Supramol. Chem.1, 189–191.
  3. Bruker (1999). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fukuda, Y., Seino, A., Mafune, K., Nakagawa, H. & Linert, W. (1994). J. Coord. Chem.33, 123–136.
  6. Lim, Y. Y., Chen, W., Tan, L. L., You, X. Z. & Yao, T. M. (1994). Polyhedron, 13, 2861–2866.
  7. Mei, G.-Q., Huang, K.-L. & Huang, H.-P. (2006a). Acta Cryst. E62, m2743–m2744.
  8. Mei, G.-Q., Huang, K.-L., Huang, H.-P. & Li, Y.-Z. (2006b). Acta Cryst. E62, m2368–m2370.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shen, X.-P., Zou, J.-Z., Zha, Z.-G., Duan, C.-Y. & Xu, Z. (1999a). Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 793–797.
  12. Shen, X.-P., Zou, J.-Z., Zha, Z.-G., Xu, Z., Yip, B. C. & Fun, H. K. (1999b). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 15, 641–647.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2009). publCIF. In preparation.
  15. Zhang, Y., Breeze, S. R., Wang, S., Greedan, J. E., Raju, N. P. & Li, L. (1999). Can. J. Chem.77, 1424–1435.
  16. Zhang, Y., Wang, S., Enright, G. D. & Breeze, S. R. (1998). J. Am. Chem. Soc.120, 9398–9399.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809006898/ng2549sup1.cif

e-65-0m366-sup1.cif (35KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006898/ng2549Isup2.hkl

e-65-0m366-Isup2.hkl (339KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES