Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):o888. doi: 10.1107/S1600536809010460

(2R,5S)-5-Benzyl-2,3-dimethyl-4-oxo-2-phenyl­imidazolidin-1-ium chloride

Shuai Zhang a, Yifeng Wang a, Bailin Li a,b, Guangcun Zhang a, Shuping Luo a,*
PMCID: PMC2969013  PMID: 21582597

Abstract

The title hydro­chloride salt, C18H21N2O+·Cl, is an imidazolidinone catalyst, which was derived from L-phenyl­alanine through cyclization with acetophenone. The imidazolidinone compound has a five-membered heterocyclic ring including two chiral centres. The imidazolidinone ring displays an envelope conformation, with the flap protonated N atom lying 0.497 (3) Å above the mean plane of the remaining four atoms. In the crystal structure, one-dimensional supra­molecular chains parallel to the crystallographic 21 screw axis are formed by N—H⋯Cl hydrogen bonds involving the NH2 + and Cl groups. Intra­molecular N—H⋯Cl inter­actions are also present.

Related literature

For chiral secondary amine catalysts based on the imidazolidinone architecture, see: Ouellet et al. (2007). For Michael additions of aldehydes to enones with a MacMillan imidazol­idinone catalyst, see: Hechavarria Fonseca & List (2004).graphic file with name e-65-0o888-scheme1.jpg

Experimental

Crystal data

  • C18H21N2O+·Cl

  • M r = 316.83

  • Monoclinic, Inline graphic

  • a = 10.5797 (11) Å

  • b = 7.5876 (7) Å

  • c = 10.8741 (12) Å

  • β = 105.516 (3)°

  • V = 841.10 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.11 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.920, T max = 0.975

  • 8064 measured reflections

  • 3371 independent reflections

  • 2933 reflections with F 2 > 2σ(F 2)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.073

  • S = 1.00

  • 3371 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 1323 Friedel pairs

  • Flack parameter: 0.03 (4)

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010460/bh2221sup1.cif

e-65-0o888-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010460/bh2221Isup2.hkl

e-65-0o888-Isup2.hkl (165.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H201⋯Cl1 0.86 2.30 3.1170 (14) 160
N2—H202⋯Cl1i 0.86 2.24 3.0999 (14) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Professor Jian-Ming Gu (Zhejiang University, China), for his help.

supplementary crystallographic information

Comment

Ten years ago, MacMillan and his laboratory developed chiral secondary amine catalysts based on the imidazolidinone architecture, which has led to the development of over 30 different enantioselective transformations for asymmetric synthesis (Ouellet et al., 2007). In recent years, Michael additions of aldehydes to enones with a MacMillan imidazolidinone catalyst have been reported (Hechavarria Fonseca & List, 2004). The title compound, prepared as a kind of organocatalyst for use in the asymmetric Michael addition of aldehydes to enones, was synthesized from L-phenylalanine. The crystal structure and absolute configuration of the title compound are reported in this article.

The compound consists of an ionic pair, a protonated ammonium cation and a Cl- anion (Fig. 1). The chiral atom C1 has the expected S configuration, while the other chiral atom C3 was determined to be in a R configuration. The C1/C2/C3/N1 atoms of the imidazolidinone ring are almost coplanar. The distance of atom N2 to the C1/C2/C3/N1 mean plane is 0.497 (3) Å, while the distance of atom C12 of the benzyl group to the plane is 0.920 (4) Å. In the crystal structure of the title salt, one-dimensional supramolecular chains are formed, by intra- and inter-molecular N—H···Cl hydrogen bonds (Fig. 2).

Experimental

To a stirred solution of L-phenylalanine (3.87 g, 24 mmol) in dry methanol (50 ml) was added thionyl chloride (2.72 ml, 37.5 mmol). After refluxed for 48 h., the solution was concentrated under vacuum and L-phenylalanine methyl ester dichloride crystallized from methanol to give white crystals. To an ethanolic MeNH2 solution (8 M, 6 ml) was added L-phenylalanine methyl ester dihydrochloride (2.41 g, 10 mmol). The solution was stirred at room temperature for 24 h, and then the solvent removed under reduced pressure. To this residue was added MeOH (80 ml), acetophenone (3 g, 25 mmol), and a catalytic amount of p-toluenesulfonic acid (30 mg, 0.16 mmol). The resulting solution was refluxed for 24 h and further stirred at room temperature for 2 h. The mixture was subsequently concentrated under reduced pressure, giving the crude product. The resolution of the racemic compounds was by means of column chromatography with methyl and petroleum ether (1:4). The residue was taken up in ethylether and a solution of HCl-dioxane (4.0 M) was added to the precipitate. Suitable crystals were obtained by slow evaporation of a methanol solution of the crude at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) or 0.98 Å (methine CH), and N—H = 0.86 Å. Displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with the atomic labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

A part of the crystal structure of the title salt, with hydrogen bonds represented with dashed lines.

Crystal data

C18H21N2O+·Cl F(000) = 336.00
Mr = 316.83 Dx = 1.251 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2yb Cell parameters from 5642 reflections
a = 10.5797 (11) Å θ = 3.1–27.4°
b = 7.5876 (7) Å µ = 0.23 mm1
c = 10.8741 (12) Å T = 296 K
β = 105.516 (3)° Needle, colourless
V = 841.10 (15) Å3 0.34 × 0.26 × 0.11 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 2933 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.024
ω scans θmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −13→13
Tmin = 0.920, Tmax = 0.975 k = −8→9
8064 measured reflections l = −14→14
3371 independent reflections

Refinement

Refinement on F2 (Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.030 Δρmax = 0.32 e Å3
wR(F2) = 0.073 Δρmin = −0.30 e Å3
S = 1.00 Extinction correction: CRYSTALS (Betteridge et al., 2003)
3371 reflections Extinction coefficient: 148 (16)
201 parameters Absolute structure: Flack (1983), 1323 Friedel pairs
H-atom parameters constrained Flack parameter: 0.03 (4)
w = 1/[0.0003Fo2 + 1.04σ(Fo2)]/(4Fo2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.93865 (4) 0.37096 (8) 0.38333 (4) 0.04566 (11)
O1 0.55546 (12) 0.94486 (19) 0.53994 (12) 0.0482 (3)
N1 0.66144 (12) 0.93555 (17) 0.38197 (12) 0.0328 (3)
N2 0.80291 (11) 0.70805 (17) 0.45120 (12) 0.0282 (3)
C1 0.70374 (14) 0.7044 (2) 0.52767 (14) 0.0300 (4)
C2 0.63026 (12) 0.8761 (2) 0.48651 (13) 0.0329 (3)
C3 0.73966 (14) 0.8101 (2) 0.33039 (14) 0.0299 (3)
C4 0.6042 (2) 1.0933 (2) 0.3114 (2) 0.0506 (5)
C5 0.84477 (16) 0.9014 (2) 0.28214 (17) 0.0433 (5)
C6 0.65243 (14) 0.6841 (2) 0.23338 (14) 0.0308 (4)
C7 0.70586 (18) 0.5811 (2) 0.15399 (17) 0.0424 (5)
C8 0.6288 (2) 0.4612 (2) 0.07068 (18) 0.0539 (6)
C9 0.4987 (2) 0.4414 (2) 0.06476 (19) 0.0538 (5)
C10 0.44421 (19) 0.5420 (2) 0.14153 (19) 0.0506 (5)
C11 0.51948 (16) 0.6636 (2) 0.22594 (16) 0.0395 (4)
C12 0.76199 (17) 0.6939 (2) 0.67155 (14) 0.0353 (4)
C13 0.80340 (14) 0.5137 (2) 0.72774 (17) 0.0347 (4)
C14 0.8565 (2) 0.4999 (2) 0.8593 (2) 0.0530 (5)
C15 0.8969 (2) 0.3397 (3) 0.9158 (2) 0.0684 (7)
C16 0.8867 (2) 0.1899 (3) 0.8436 (2) 0.0618 (6)
C17 0.8346 (2) 0.2009 (2) 0.7136 (2) 0.0582 (6)
C18 0.79285 (17) 0.3619 (2) 0.65706 (18) 0.0467 (4)
H1 0.6438 0.6050 0.4996 0.036*
H7 0.7941 0.5929 0.1569 0.051*
H8 0.6658 0.3932 0.0182 0.065*
H9 0.4478 0.3602 0.0089 0.065*
H10 0.3557 0.5289 0.1373 0.061*
H11 0.4811 0.7314 0.2775 0.047*
H14 0.8647 0.6005 0.9097 0.064*
H15 0.9314 0.3332 1.0038 0.082*
H16 0.9148 0.0821 0.8819 0.074*
H17 0.8274 0.1001 0.6636 0.070*
H18 0.7568 0.3672 0.5692 0.056*
H41 0.5471 1.1496 0.3547 0.061*
H42 0.5549 1.0606 0.2269 0.061*
H43 0.6729 1.1732 0.3063 0.061*
H51 0.8041 0.9742 0.2103 0.052*
H52 0.8988 0.8145 0.2568 0.052*
H53 0.8980 0.9732 0.3489 0.052*
H121 0.6969 0.7390 0.7115 0.042*
H122 0.8388 0.7692 0.6932 0.042*
H201 0.8213 0.6026 0.4327 0.034*
H202 0.8734 0.7600 0.4934 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0397 (2) 0.0372 (2) 0.0553 (2) 0.0126 (2) 0.00437 (17) −0.0024 (2)
O1 0.0443 (6) 0.0550 (8) 0.0494 (7) 0.0169 (5) 0.0195 (5) −0.0050 (5)
N1 0.0349 (6) 0.0262 (6) 0.0368 (7) 0.0080 (5) 0.0084 (5) 0.0012 (5)
N2 0.0240 (5) 0.0249 (7) 0.0344 (6) 0.0015 (5) 0.0056 (5) −0.0035 (5)
C1 0.0271 (7) 0.0279 (8) 0.0354 (8) −0.0013 (6) 0.0091 (6) −0.0020 (6)
C2 0.0269 (6) 0.0344 (8) 0.0357 (8) 0.0021 (8) 0.0056 (5) −0.0057 (8)
C3 0.0289 (7) 0.0261 (8) 0.0340 (8) 0.0033 (6) 0.0074 (6) 0.0013 (6)
C4 0.0570 (11) 0.0356 (10) 0.0565 (12) 0.0167 (9) 0.0107 (9) 0.0075 (8)
C5 0.0408 (8) 0.0405 (11) 0.0521 (10) −0.0058 (8) 0.0188 (8) 0.0026 (8)
C6 0.0337 (7) 0.0297 (8) 0.0276 (7) 0.0034 (7) 0.0058 (6) 0.0025 (6)
C7 0.0430 (9) 0.0445 (10) 0.0392 (9) 0.0087 (8) 0.0100 (8) −0.0045 (8)
C8 0.0678 (12) 0.0526 (12) 0.0392 (10) 0.0090 (11) 0.0109 (9) −0.0113 (9)
C9 0.0638 (12) 0.0493 (11) 0.0408 (10) −0.0109 (10) 0.0009 (9) −0.0103 (8)
C10 0.0413 (9) 0.0615 (13) 0.0448 (11) −0.0121 (9) 0.0042 (8) −0.0023 (9)
C11 0.0337 (8) 0.0477 (11) 0.0376 (9) −0.0032 (8) 0.0103 (7) −0.0031 (8)
C12 0.0388 (8) 0.0333 (9) 0.0342 (8) −0.0027 (7) 0.0104 (7) −0.0009 (7)
C13 0.0311 (8) 0.0350 (9) 0.0384 (9) −0.0029 (7) 0.0100 (7) 0.0036 (7)
C14 0.0629 (12) 0.0495 (12) 0.0408 (10) −0.0015 (10) 0.0037 (9) 0.0017 (9)
C15 0.0731 (13) 0.0708 (19) 0.0514 (12) 0.0022 (13) −0.0005 (10) 0.0230 (12)
C16 0.0491 (11) 0.0464 (13) 0.0818 (17) −0.0030 (10) 0.0035 (11) 0.0232 (12)
C17 0.0566 (11) 0.0342 (11) 0.0807 (15) −0.0043 (9) 0.0129 (11) 0.0047 (10)
C18 0.0484 (9) 0.0387 (9) 0.0496 (10) −0.0024 (10) 0.0072 (7) 0.0003 (10)

Geometric parameters (Å, °)

O1—C2 1.218 (2) C17—C18 1.385 (2)
N1—C2 1.344 (2) N2—H201 0.860
N1—C3 1.467 (2) N2—H202 0.860
N1—C4 1.463 (2) C1—H1 0.980
N2—C1 1.503 (2) C4—H41 0.960
N2—C3 1.5176 (19) C4—H42 0.960
C1—C2 1.521 (2) C4—H43 0.960
C1—C12 1.523 (2) C5—H51 0.960
C3—C5 1.518 (2) C5—H52 0.960
C3—C6 1.536 (2) C5—H53 0.960
C6—C7 1.392 (2) C7—H7 0.930
C6—C11 1.396 (2) C8—H8 0.930
C7—C8 1.385 (2) C9—H9 0.930
C8—C9 1.368 (3) C10—H10 0.930
C9—C10 1.367 (3) C11—H11 0.930
C10—C11 1.392 (2) C12—H121 0.970
C12—C13 1.514 (2) C12—H122 0.970
C13—C14 1.394 (2) C14—H14 0.930
C13—C18 1.373 (2) C15—H15 0.930
C14—C15 1.378 (3) C16—H16 0.930
C15—C16 1.369 (3) C17—H17 0.930
C16—C17 1.375 (3) C18—H18 0.930
C2—N1—C3 113.37 (13) C2—C1—H1 109.3
C2—N1—C4 123.90 (16) C12—C1—H1 109.3
C3—N1—C4 121.80 (15) N1—C4—H41 109.5
C1—N2—C3 106.07 (11) N1—C4—H42 109.5
N2—C1—C2 101.48 (12) N1—C4—H43 109.5
N2—C1—C12 114.76 (12) H41—C4—H42 109.5
C2—C1—C12 112.44 (13) H41—C4—H43 109.5
O1—C2—N1 126.71 (16) H42—C4—H43 109.5
O1—C2—C1 124.95 (15) C3—C5—H51 109.5
N1—C2—C1 108.34 (14) C3—C5—H52 109.5
N1—C3—N2 99.40 (12) C3—C5—H53 109.5
N1—C3—C5 112.12 (13) H51—C5—H52 109.5
N1—C3—C6 111.70 (12) H51—C5—H53 109.5
N2—C3—C5 109.75 (11) H52—C5—H53 109.5
N2—C3—C6 108.76 (12) C6—C7—H7 119.7
C5—C3—C6 114.07 (14) C8—C7—H7 119.7
C3—C6—C7 120.44 (14) C7—C8—H8 119.6
C3—C6—C11 121.35 (15) C9—C8—H8 119.6
C7—C6—C11 118.15 (14) C8—C9—H9 120.2
C6—C7—C8 120.59 (18) C10—C9—H9 120.2
C7—C8—C9 120.8 (2) C9—C10—H10 119.6
C8—C9—C10 119.57 (18) C11—C10—H10 119.6
C9—C10—C11 120.81 (18) C6—C11—H11 119.9
C6—C11—C10 120.13 (17) C10—C11—H11 119.9
C1—C12—C13 117.13 (14) C1—C12—H121 107.5
C12—C13—C14 118.38 (16) C1—C12—H122 107.5
C12—C13—C18 124.10 (15) C13—C12—H121 107.5
C14—C13—C18 117.52 (17) C13—C12—H122 107.5
C13—C14—C15 121.02 (19) H121—C12—H122 109.5
C14—C15—C16 120.6 (2) C13—C14—H14 119.5
C15—C16—C17 119.2 (2) C15—C14—H14 119.5
C16—C17—C18 120.2 (2) C14—C15—H15 119.7
C13—C18—C17 121.50 (17) C16—C15—H15 119.7
C1—N2—H201 110.3 C15—C16—H16 120.4
C1—N2—H202 110.3 C17—C16—H16 120.4
C3—N2—H201 110.3 C16—C17—H17 119.9
C3—N2—H202 110.3 C18—C17—H17 119.9
H201—N2—H202 109.5 C13—C18—H18 119.2
N2—C1—H1 109.3 C17—C18—H18 119.2
C2—N1—C3—N2 −25.51 (14) N2—C3—C6—C7 −85.03 (19)
C2—N1—C3—C5 −141.42 (12) N2—C3—C6—C11 92.14 (17)
C2—N1—C3—C6 89.12 (15) C5—C3—C6—C7 37.8 (2)
C3—N1—C2—O1 −171.77 (14) C5—C3—C6—C11 −145.00 (16)
C3—N1—C2—C1 7.66 (16) C3—C6—C7—C8 176.89 (16)
C4—N1—C2—O1 −2.7 (2) C3—C6—C11—C10 −176.77 (16)
C4—N1—C2—C1 176.74 (13) C7—C6—C11—C10 0.5 (2)
C4—N1—C3—N2 165.15 (13) C11—C6—C7—C8 −0.4 (2)
C4—N1—C3—C5 49.24 (18) C6—C7—C8—C9 −0.0 (2)
C4—N1—C3—C6 −80.22 (18) C7—C8—C9—C10 0.3 (3)
C1—N2—C3—N1 33.21 (13) C8—C9—C10—C11 −0.2 (3)
C1—N2—C3—C5 150.92 (13) C9—C10—C11—C6 −0.2 (2)
C1—N2—C3—C6 −83.66 (14) C1—C12—C13—C14 −179.68 (17)
C3—N2—C1—C2 −29.59 (13) C1—C12—C13—C18 0.8 (2)
C3—N2—C1—C12 −151.10 (12) C12—C13—C14—C15 −179.5 (2)
N2—C1—C2—O1 −166.51 (14) C12—C13—C18—C17 178.83 (18)
N2—C1—C2—N1 14.06 (14) C14—C13—C18—C17 −0.7 (2)
N2—C1—C12—C13 −81.41 (18) C18—C13—C14—C15 0.1 (2)
C2—C1—C12—C13 163.27 (14) C13—C14—C15—C16 0.5 (3)
C12—C1—C2—O1 −43.4 (2) C14—C15—C16—C17 −0.5 (3)
C12—C1—C2—N1 137.17 (14) C15—C16—C17—C18 −0.1 (2)
N1—C3—C6—C7 166.27 (15) C16—C17—C18—C13 0.7 (3)
N1—C3—C6—C11 −16.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H201···Cl1 0.86 2.30 3.1170 (14) 160
N2—H202···Cl1i 0.86 2.24 3.0999 (14) 174

Symmetry codes: (i) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2221).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hechavarria Fonseca, M. T. & List, B. (2004). Angew. Chem. Int. Ed 43, 3958–3960. [DOI] [PubMed]
  6. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  7. Ouellet, S. G., Walji, A. B. & Macmillan, D. W. C. (2007). Acc. Chem. Res 40, 1327–1339. [DOI] [PubMed]
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010460/bh2221sup1.cif

e-65-0o888-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010460/bh2221Isup2.hkl

e-65-0o888-Isup2.hkl (165.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES