Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):o892. doi: 10.1107/S160053680900960X

N′-[4-(Dimethyl­amino)benzyl­idene]-3-hydr­oxy-2-naphthohydrazide

Hai-Tao Huang a,*
PMCID: PMC2969016  PMID: 21582600

Abstract

The title compound, C20H19N3O2, was obtained by the condensation of 4-(dimethyl­amino)benzaldehyde with 3-hydr­oxy-2-naphthohydrazide. The mol­ecule is approximately planar, with an intra­molecular N—H⋯O hydrogen bond involving the imino H atom and the hydr­oxy O atom. The dihedral angle between the benzene ring and the naphthyl mean plane is 2.72 (13)°. In the crystal structure, symmetry-related mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds, forming chains propagating in the c-axis direction.

Related literature

For background on compounds obtained by the condensation of aldehydes with benzohydrazides, see: Qiu & Zhao (2008); Yathirajan et al. (2007); Salhin et al. (2007). For informtaion concerning their biological properties, see: Küçükgüzel et al. (2003); Charkoudian et al. (2007). For similar structures, see: Fun et al. (2008); Liu & Li (2004); Lei et al. (2008). For bond-length values, see: Allen et al. (1987).graphic file with name e-65-0o892-scheme1.jpg

Experimental

Crystal data

  • C20H19N3O2

  • M r = 333.38

  • Monoclinic, Inline graphic

  • a = 8.090 (2) Å

  • b = 15.798 (3) Å

  • c = 13.428 (3) Å

  • β = 98.978 (3)°

  • V = 1695.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.977, T max = 0.981

  • 13922 measured reflections

  • 3670 independent reflections

  • 1629 reflections with I > 2σ(I)

  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.190

  • S = 1.03

  • 3670 reflections

  • 232 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900960X/su2102sup1.cif

e-65-0o892-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900960X/su2102Isup2.hkl

e-65-0o892-Isup2.hkl (180KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.898 (10) 1.90 (2) 2.644 (3) 139 (2)
O2—H2⋯O1i 0.82 1.85 2.651 (3) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by Qiqihar Medical University, China.

supplementary crystallographic information

Comment

In recent years compounds derived from the condensation of aldehydes with benzohydrazides have been widely investigated, either for their structures (Qiu & Zhao, 2008; Yathirajan et al., 2007; Salhin et al., 2007) or for their biological properties (Küçükgüzel et al., 2003); Charkoudian et al., 2007). The author reports herein the crystal structure of the title compound, obtained by the condensation of 4-dimethylaminobenzaldehyde with 3-hydroxy-2-naphthohydrazide.

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths are within normal values (Allen et al., 1987), and are comparable to the values in similar compounds (Fun et al., 2008; Liu & Li, 2004; Lei et al., 2008). The molecule is approximately coplanar, with the dihedral angle between the benzene ring and the naphthyl mean-plane being 2.72 (13)°. There is an intramolecular N-H···O hydrogen bond, involving the imino H-atom and the hydroxyl O-atom (Table 1).

In the crystal structure symmetry related molecules are linked via intermolecular O–H···O hydrogen bonds to form one-dimensional chains propagating in the c direction (Fig. 2 and Table 1).

Experimental

The title compound was prepared by the condensation of 4-dimethylaminobenzaldehyde (0.1 mol) and 3-hydroxy-2-naphthohydrazide (0.1 mmol) in ethanol (20 ml). The excess ethanol was removed by distillation. The colorless solid obtained was filtered and washed with ethanol. Single crystals, suitable for X-ray diffraction, were obtained on slow evaporation of a solution of the title compound in ethanol.

Refinement

The imino H-atom was located in a difference Fourier map and refined with the N–H distance restrained to 0.90 (1) Å. The remainder of the H-atoms were positioned geometrically (C–H = 0.93-0.96 Å, O–H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The ratio of observed to unique reflections is low (44%); this is caused by the fact that the crystal diffracted weakly.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intramolecular N2-H2B···O2 hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. The intermolecular O-H···O hydrogen bonds are shown as dashed lines - see Table 1 for details (H-atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C20H19N3O2 F(000) = 704
Mr = 333.38 Dx = 1.306 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 762 reflections
a = 8.090 (2) Å θ = 2.5–24.3°
b = 15.798 (3) Å µ = 0.09 mm1
c = 13.428 (3) Å T = 298 K
β = 98.978 (3)° Block, colorless
V = 1695.2 (7) Å3 0.27 × 0.23 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3670 independent reflections
Radiation source: fine-focus sealed tube 1629 reflections with I > 2σ(I)
graphite Rint = 0.075
ω scans θmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.977, Tmax = 0.981 k = −20→20
13922 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2)]
3670 reflections (Δ/σ)max = 0.001
232 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.0121 (3) 0.25089 (12) 0.13318 (14) 0.0832 (7)
O2 0.0653 (3) 0.25424 (12) −0.16764 (12) 0.0674 (6)
H2 0.0589 0.2496 −0.2289 0.101*
N1 0.1356 (3) 0.39358 (17) 0.07447 (17) 0.0672 (7)
N2 0.0872 (3) 0.32477 (18) 0.01253 (17) 0.0675 (7)
N3 0.4476 (3) 0.76089 (17) 0.2113 (2) 0.0763 (8)
C1 0.2663 (4) 0.5303 (2) 0.0807 (2) 0.0619 (8)
C2 0.2427 (4) 0.5531 (2) 0.1772 (2) 0.0701 (9)
H2A 0.1870 0.5161 0.2144 0.084*
C3 0.2992 (4) 0.6282 (2) 0.2186 (2) 0.0726 (9)
H3 0.2785 0.6415 0.2830 0.087*
C4 0.3873 (4) 0.6862 (2) 0.1683 (2) 0.0615 (8)
C5 0.4095 (4) 0.6637 (2) 0.0710 (2) 0.0756 (10)
H5 0.4645 0.7006 0.0333 0.091*
C6 0.3512 (5) 0.5876 (2) 0.0302 (2) 0.0825 (10)
H6 0.3699 0.5741 −0.0345 0.099*
C7 0.4285 (4) 0.7842 (2) 0.3128 (2) 0.0881 (11)
H7A 0.3154 0.7738 0.3228 0.132*
H7B 0.4540 0.8432 0.3232 0.132*
H7C 0.5036 0.7512 0.3599 0.132*
C8 0.5351 (4) 0.8210 (2) 0.1573 (3) 0.0897 (11)
H8A 0.6426 0.7985 0.1496 0.134*
H8B 0.5496 0.8731 0.1944 0.134*
H8C 0.4711 0.8312 0.0920 0.134*
C9 0.2072 (4) 0.4523 (2) 0.0329 (2) 0.0716 (9)
H9 0.2226 0.4443 −0.0336 0.086*
C10 0.0123 (4) 0.25726 (19) 0.0455 (2) 0.0588 (8)
C11 −0.0405 (3) 0.18921 (19) −0.02859 (18) 0.0542 (7)
C12 −0.0109 (3) 0.18591 (18) −0.13032 (18) 0.0524 (7)
C13 −0.0562 (4) 0.11700 (19) −0.18837 (19) 0.0589 (8)
H13 −0.0304 0.1152 −0.2535 0.071*
C14 −0.1407 (3) 0.0483 (2) −0.1533 (2) 0.0580 (8)
C15 −0.1911 (4) −0.0237 (2) −0.2123 (2) 0.0721 (9)
H15 −0.1660 −0.0273 −0.2774 0.087*
C16 −0.2753 (4) −0.0874 (2) −0.1759 (3) 0.0830 (10)
H16 −0.3073 −0.1344 −0.2161 0.100*
C17 −0.3150 (4) −0.0836 (2) −0.0779 (3) 0.0845 (10)
H17 −0.3747 −0.1274 −0.0540 0.101*
C18 −0.2665 (4) −0.0159 (2) −0.0181 (2) 0.0736 (9)
H18 −0.2927 −0.0138 0.0469 0.088*
C19 −0.1767 (3) 0.0512 (2) −0.0534 (2) 0.0567 (8)
C20 −0.1228 (4) 0.12143 (19) 0.00589 (19) 0.0598 (8)
H20 −0.1434 0.1226 0.0721 0.072*
H2B 0.104 (3) 0.3251 (17) −0.0520 (10) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.134 (2) 0.0852 (15) 0.0327 (11) 0.0087 (13) 0.0201 (11) −0.0037 (10)
O2 0.0922 (15) 0.0803 (15) 0.0320 (10) 0.0019 (12) 0.0165 (10) 0.0003 (10)
N1 0.0862 (19) 0.0724 (18) 0.0434 (14) 0.0093 (15) 0.0117 (13) −0.0071 (13)
N2 0.0881 (19) 0.0812 (19) 0.0343 (13) 0.0019 (16) 0.0136 (13) −0.0079 (14)
N3 0.090 (2) 0.079 (2) 0.0635 (16) −0.0053 (16) 0.0226 (15) −0.0080 (15)
C1 0.074 (2) 0.072 (2) 0.0400 (16) 0.0084 (17) 0.0105 (15) 0.0017 (16)
C2 0.077 (2) 0.087 (2) 0.0491 (18) −0.0074 (19) 0.0202 (16) −0.0056 (17)
C3 0.081 (2) 0.096 (3) 0.0452 (17) −0.007 (2) 0.0232 (16) −0.0104 (18)
C4 0.0603 (19) 0.076 (2) 0.0488 (17) 0.0130 (18) 0.0099 (15) 0.0022 (17)
C5 0.104 (3) 0.079 (2) 0.0494 (18) 0.003 (2) 0.0292 (17) 0.0065 (17)
C6 0.122 (3) 0.084 (2) 0.0449 (17) −0.001 (2) 0.0248 (19) −0.0022 (18)
C7 0.101 (3) 0.097 (3) 0.065 (2) 0.007 (2) 0.0097 (19) −0.0166 (19)
C8 0.093 (3) 0.087 (3) 0.093 (3) 0.001 (2) 0.024 (2) 0.003 (2)
C9 0.092 (3) 0.082 (2) 0.0416 (17) 0.008 (2) 0.0126 (17) −0.0021 (18)
C10 0.072 (2) 0.072 (2) 0.0328 (15) 0.0138 (18) 0.0078 (14) 0.0016 (15)
C11 0.0633 (19) 0.0687 (19) 0.0309 (14) 0.0171 (16) 0.0082 (13) 0.0025 (14)
C12 0.0582 (18) 0.065 (2) 0.0344 (14) 0.0108 (16) 0.0090 (13) 0.0047 (14)
C13 0.0668 (19) 0.078 (2) 0.0325 (14) 0.0126 (17) 0.0083 (13) −0.0040 (15)
C14 0.0569 (19) 0.072 (2) 0.0437 (16) 0.0118 (16) 0.0039 (14) 0.0003 (16)
C15 0.073 (2) 0.091 (3) 0.0513 (18) 0.005 (2) 0.0053 (16) −0.0084 (18)
C16 0.079 (2) 0.088 (3) 0.078 (2) −0.010 (2) 0.001 (2) −0.010 (2)
C17 0.071 (2) 0.097 (3) 0.087 (3) −0.008 (2) 0.015 (2) 0.002 (2)
C18 0.069 (2) 0.092 (3) 0.063 (2) 0.006 (2) 0.0202 (17) 0.0032 (19)
C19 0.0537 (18) 0.072 (2) 0.0448 (16) 0.0105 (16) 0.0099 (14) 0.0046 (16)
C20 0.069 (2) 0.078 (2) 0.0344 (15) 0.0190 (18) 0.0154 (14) 0.0037 (15)

Geometric parameters (Å, °)

O1—C10 1.228 (3) C7—H7C 0.9600
O2—C12 1.376 (3) C8—H8A 0.9600
O2—H2 0.8200 C8—H8B 0.9600
N1—C9 1.268 (3) C8—H8C 0.9600
N1—N2 1.387 (3) C9—H9 0.9300
N2—C10 1.336 (3) C10—C11 1.481 (4)
N2—H2B 0.898 (10) C11—C20 1.379 (4)
N3—C4 1.370 (4) C11—C12 1.424 (3)
N3—C7 1.444 (4) C12—C13 1.356 (4)
N3—C8 1.444 (4) C13—C14 1.403 (4)
C1—C6 1.376 (4) C13—H13 0.9300
C1—C2 1.386 (4) C14—C15 1.410 (4)
C1—C9 1.436 (4) C14—C19 1.417 (3)
C2—C3 1.359 (4) C15—C16 1.349 (4)
C2—H2A 0.9300 C15—H15 0.9300
C3—C4 1.399 (4) C16—C17 1.404 (5)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.392 (4) C17—C18 1.359 (4)
C5—C6 1.375 (4) C17—H17 0.9300
C5—H5 0.9300 C18—C19 1.408 (4)
C6—H6 0.9300 C18—H18 0.9300
C7—H7A 0.9600 C19—C20 1.395 (4)
C7—H7B 0.9600 C20—H20 0.9300
C12—O2—H2 109.5 H8B—C8—H8C 109.5
C9—N1—N2 114.5 (2) N1—C9—C1 125.1 (3)
C10—N2—N1 121.8 (2) N1—C9—H9 117.5
C10—N2—H2B 117.9 (18) C1—C9—H9 117.5
N1—N2—H2B 120.3 (18) O1—C10—N2 122.1 (3)
C4—N3—C7 122.3 (3) O1—C10—C11 120.8 (3)
C4—N3—C8 121.7 (3) N2—C10—C11 117.1 (2)
C7—N3—C8 116.0 (3) C20—C11—C12 117.1 (3)
C6—C1—C2 116.3 (3) C20—C11—C10 116.2 (2)
C6—C1—C9 120.0 (3) C12—C11—C10 126.6 (3)
C2—C1—C9 123.7 (3) C13—C12—O2 121.1 (2)
C3—C2—C1 121.5 (3) C13—C12—C11 120.7 (3)
C3—C2—H2A 119.2 O2—C12—C11 118.2 (3)
C1—C2—H2A 119.2 C12—C13—C14 122.0 (3)
C2—C3—C4 122.6 (3) C12—C13—H13 119.0
C2—C3—H3 118.7 C14—C13—H13 119.0
C4—C3—H3 118.7 C13—C14—C15 123.3 (3)
N3—C4—C5 121.7 (3) C13—C14—C19 118.4 (3)
N3—C4—C3 122.4 (3) C15—C14—C19 118.3 (3)
C5—C4—C3 115.9 (3) C16—C15—C14 121.1 (3)
C6—C5—C4 120.7 (3) C16—C15—H15 119.5
C6—C5—H5 119.6 C14—C15—H15 119.5
C4—C5—H5 119.6 C15—C16—C17 120.6 (3)
C5—C6—C1 123.0 (3) C15—C16—H16 119.7
C5—C6—H6 118.5 C17—C16—H16 119.7
C1—C6—H6 118.5 C18—C17—C16 120.1 (3)
N3—C7—H7A 109.5 C18—C17—H17 119.9
N3—C7—H7B 109.5 C16—C17—H17 119.9
H7A—C7—H7B 109.5 C17—C18—C19 120.7 (3)
N3—C7—H7C 109.5 C17—C18—H18 119.7
H7A—C7—H7C 109.5 C19—C18—H18 119.7
H7B—C7—H7C 109.5 C20—C19—C18 122.6 (3)
N3—C8—H8A 109.5 C20—C19—C14 118.3 (3)
N3—C8—H8B 109.5 C18—C19—C14 119.1 (3)
H8A—C8—H8B 109.5 C11—C20—C19 123.4 (2)
N3—C8—H8C 109.5 C11—C20—H20 118.3
H8A—C8—H8C 109.5 C19—C20—H20 118.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O2 0.90 (1) 1.90 (2) 2.644 (3) 139 (2)
O2—H2···O1i 0.82 1.85 2.651 (3) 165

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2102).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031–5042. [DOI] [PubMed]
  4. Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [DOI] [PMC free article] [PubMed]
  5. Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem.38, 1005–1013. [DOI] [PubMed]
  6. Lei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, o909. [DOI] [PMC free article] [PubMed]
  7. Liu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694–o695.
  8. Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067. [DOI] [PMC free article] [PubMed]
  9. Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900960X/su2102sup1.cif

e-65-0o892-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900960X/su2102Isup2.hkl

e-65-0o892-Isup2.hkl (180KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES