Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o705. doi: 10.1107/S1600536809006503

3-Mesityl-2-oxo-1-oxaspiro­[4.4]non-3-en-4-yl 4-chloro­benzoate

Ming-Hua Ji a, Min Xia a, Guo-Nian Zhu b, Jin-Hao Zhao b,*
PMCID: PMC2969026  PMID: 21582443

Abstract

The title compound, C24H23ClO4, is a potent insecticide and miticide. The five-membered cyclo­pentane ring displays an envelope conformation with the atom at the flap position 0.611 (2) Å out of the mean plane formed by the other four atoms. The furan ring makes dihedral angles of 71.3 (2) and 81.9 (2)°, respectively, with the 2,4,6-trimethyl­phenyl and 4-chloro­phenyl rings. The dihedral angle between the two benzene rings is 76.6 (1)°. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds, forming chains running along the c axis.

Related literature

For a related insecticide, see: Bayer, (1995). For a related methyl­butyrate structure, see: Yu et al. (2009). For the extinction correction, see: Larson (1970).graphic file with name e-65-0o705-scheme1.jpg

Experimental

Crystal data

  • C24H23ClO4

  • M r = 410.90

  • Monoclinic, Inline graphic

  • a = 6.4880 (2) Å

  • b = 22.9397 (8) Å

  • c = 14.6305 (6) Å

  • β = 91.533 (1)°

  • V = 2176.72 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.62 × 0.48 × 0.34 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.867, T max = 0.934

  • 33470 measured reflections

  • 4926 independent reflections

  • 3235 reflections with F 2 > 2σ(F 2)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.092

  • S = 1.00

  • 4926 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006503/si2154sup1.cif

e-65-0o705-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006503/si2154Isup2.hkl

e-65-0o705-Isup2.hkl (241.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H242⋯O2i 0.97 2.57 3.475 (2) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2008C02007-3, 2008C21029). They also thank Professor Jian-Ming Gu for help with the analysis of the crystal data.

supplementary crystallographic information

Comment

4-hydroxyl-3-(2,4,6-trimethylphenyl)-1-oxaspiro[4,4]non-3-en-2-one (HTPO) is a key intermediate of Spiromesifen, which is an efficient insecticide and miticide, developed by Bayer company (Bayer, 1995). As part of our continuing interest in the design and synthesis of the new insecticide and miticide, we have isolated the title compound (Fig. 1), by the condensation reaction of 4-chlorophenyl- acetylchloride and HTPO as colorless crystals. The molecule contains two six-membered rings and two five-membered rings. Atoms C1, C2, C12, C20, O1 and O2 are coplanar, the largest deviation being 0.011 (11) Å for O1. As expected, C2=C12, C1=O2 and C13=O4 are typical double bonds with bond distances of 1.317 (2), 1.202 (2) and 1.195 (3) Å suggests that C2, C12 and C13 atoms are sp2 hybridized. The bond distance of C1—C2 is 1.475 (2) Å, suggesting that the carbonyl group on C1 has formed a conjugate system with double bond on C2 and C12. In the crystal, molecules are linked through weak intermolecular C—H···O hydrogen bonds (Table 1), forming chains running along the c axis (Fig. 2), in contrast to the related 3-mesityl-2-oxo-1-oxaspiro[4.4]non-3-en-4-yl 2-(chlorophenyl)-3-methyl- butyrate structure, where intermolecular C—H···Cl hydrogen bonds forming chains along the screw axis direction b (Yu et al. 2009).

Experimental

4-hydroxyl-3-(2,4,6-trimethylphenyl)-1-oxaspiro[4,4]non-3-en-2-one (0.272 g, 1 mmol) and triethylamine (0.152 g, 1.5 mmol) were dissolved in dry dichloromethane (15 ml) with stirring. 4-chlorophenylacetyl chloride (0.210 g, 1.2 mmol) was added dropwise to the mixture in a water bath. The mixture was stirred at 293–298 K for 5 h, and then 1% aqueous HCl was added. The organic layer was washed to neutral with water and dried via Na2SO4. After filtered and concentrated, the organic residue was purified by silica gel column chromatography, eluted with ethyl acetate-petroleum ether (1:3. v/v) to give a white solid (yield 81%, 0.334 g), which was then recrystallized from acetone/ethanol (1:2, v/v) to give colourless blocks.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound, viewed along the a axis.

Crystal data

C24H23ClO4 F(000) = 864.00
Mr = 410.90 Dx = 1.254 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 20338 reflections
a = 6.4880 (2) Å θ = 3.0–27.4°
b = 22.9397 (8) Å µ = 0.20 mm1
c = 14.6305 (6) Å T = 296 K
β = 91.533 (1)° Block, colorless
V = 2176.72 (14) Å3 0.62 × 0.48 × 0.34 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 3235 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.030
ω scans θmax = 27.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −8→7
Tmin = 0.867, Tmax = 0.934 k = −29→29
33470 measured reflections l = −18→18
4926 independent reflections

Refinement

Refinement on F2 w = 1/[0.0002Fo2 + 1.45σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.037 (Δ/σ)max < 0.001
wR(F2) = 0.092 Δρmax = 0.14 e Å3
S = 1.00 Δρmin = −0.17 e Å3
4926 reflections Extinction correction: Larson (1970), equation 22
263 parameters Extinction coefficient: 695 (30)
H-atom parameters constrained

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.25024 (8) 0.45321 (2) −0.01486 (4) 0.0960 (2)
O1 0.83337 (16) 0.19253 (4) 0.49303 (8) 0.0589 (3)
O2 0.83728 (17) 0.23623 (5) 0.62950 (8) 0.0671 (3)
O3 0.64511 (14) 0.29954 (4) 0.33174 (6) 0.0563 (3)
O4 0.31480 (18) 0.29640 (6) 0.37120 (10) 0.0822 (5)
C1 0.7983 (2) 0.23874 (6) 0.54880 (12) 0.0531 (5)
C2 0.7122 (2) 0.28760 (6) 0.49455 (12) 0.0493 (4)
C3 0.6530 (2) 0.34424 (6) 0.53503 (11) 0.0517 (4)
C4 0.4814 (2) 0.34712 (6) 0.59006 (12) 0.0617 (5)
C5 0.4308 (3) 0.40037 (8) 0.62872 (12) 0.0815 (7)
C6 0.5482 (4) 0.45001 (8) 0.61565 (16) 0.0906 (8)
C7 0.7148 (3) 0.44552 (8) 0.56064 (17) 0.0903 (7)
C8 0.7716 (2) 0.39386 (6) 0.51955 (12) 0.0664 (5)
C9 0.3514 (2) 0.29404 (8) 0.60759 (14) 0.0839 (7)
C10 0.4933 (4) 0.50730 (9) 0.66180 (18) 0.1028 (11)
C11 0.9564 (2) 0.39222 (8) 0.45970 (17) 0.0990 (8)
C12 0.7031 (2) 0.26889 (6) 0.40947 (12) 0.0498 (4)
C13 0.4412 (2) 0.31350 (6) 0.31964 (12) 0.0546 (5)
C14 0.4018 (2) 0.34881 (6) 0.23706 (11) 0.0479 (4)
C15 0.5560 (2) 0.37213 (6) 0.18689 (12) 0.0557 (5)
C16 0.5109 (2) 0.40460 (6) 0.10976 (12) 0.0653 (5)
C17 0.3095 (2) 0.41340 (6) 0.08306 (12) 0.0599 (5)
C18 0.1545 (2) 0.38918 (8) 0.13064 (14) 0.0864 (7)
C19 0.1998 (2) 0.35689 (8) 0.20804 (14) 0.0813 (6)
C20 0.7718 (2) 0.20699 (6) 0.39878 (11) 0.0526 (4)
C21 0.6061 (2) 0.16400 (6) 0.36752 (12) 0.0650 (5)
C22 0.7311 (3) 0.10964 (6) 0.34622 (13) 0.0819 (6)
C23 0.9180 (3) 0.13309 (9) 0.29939 (14) 0.0926 (7)
C24 0.9516 (2) 0.19490 (6) 0.33625 (12) 0.0718 (6)
H5 0.3147 0.4028 0.6644 0.098*
H7 0.7933 0.4787 0.5504 0.108*
H15 0.6928 0.3660 0.2050 0.067*
H16 0.6166 0.4205 0.0760 0.078*
H18 0.0182 0.3944 0.1111 0.104*
H19 0.0936 0.3405 0.2409 0.098*
H91 0.2999 0.2786 0.5504 0.101*
H92 0.2377 0.3047 0.6448 0.101*
H93 0.4337 0.2650 0.6387 0.101*
H101 0.3526 0.5060 0.6804 0.123*
H102 0.5823 0.5131 0.7145 0.123*
H103 0.5104 0.5389 0.6196 0.123*
H111 1.0216 0.3547 0.4648 0.119*
H112 0.9133 0.3989 0.3973 0.119*
H113 1.0523 0.4220 0.4788 0.119*
H211 0.5096 0.1565 0.4156 0.078*
H212 0.5318 0.1781 0.3135 0.078*
H221 0.7709 0.0891 0.4019 0.098*
H222 0.6533 0.0836 0.3060 0.098*
H231 1.0375 0.1090 0.3136 0.111*
H232 0.8938 0.1340 0.2337 0.111*
H241 1.0814 0.1973 0.3705 0.086*
H242 0.9517 0.2227 0.2863 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1083 (4) 0.0976 (3) 0.0808 (4) 0.0141 (2) −0.0245 (3) 0.0319 (3)
O1 0.0795 (7) 0.0537 (6) 0.0429 (7) 0.0070 (5) −0.0072 (5) 0.0039 (5)
O2 0.0907 (8) 0.0672 (7) 0.0425 (8) −0.0056 (5) −0.0117 (6) 0.0056 (6)
O3 0.0610 (6) 0.0657 (6) 0.0422 (7) 0.0093 (5) 0.0000 (5) 0.0114 (5)
O4 0.0608 (7) 0.1034 (11) 0.0823 (11) −0.0012 (7) 0.0019 (7) 0.0253 (9)
C1 0.0638 (10) 0.0529 (9) 0.0423 (11) −0.0086 (7) −0.0043 (8) 0.0043 (8)
C2 0.0584 (9) 0.0474 (8) 0.0419 (10) −0.0054 (6) −0.0011 (7) 0.0040 (7)
C3 0.0668 (10) 0.0462 (8) 0.0417 (10) −0.0040 (7) −0.0053 (8) 0.0022 (7)
C4 0.0803 (11) 0.0605 (10) 0.0442 (11) 0.0015 (8) −0.0008 (9) −0.0006 (8)
C5 0.1075 (15) 0.0836 (13) 0.0534 (13) 0.0250 (11) 0.0025 (11) −0.0061 (11)
C6 0.152 (2) 0.0569 (12) 0.0618 (15) 0.0231 (13) −0.0212 (14) −0.0090 (10)
C7 0.1344 (19) 0.0487 (10) 0.0867 (17) −0.0122 (11) −0.0215 (14) 0.0013 (11)
C8 0.0826 (12) 0.0518 (10) 0.0642 (13) −0.0084 (8) −0.0087 (10) 0.0072 (9)
C9 0.0858 (13) 0.0926 (13) 0.0745 (15) −0.0107 (10) 0.0220 (11) 0.0034 (11)
C10 0.132 (3) 0.0769 (14) 0.098 (2) 0.0380 (17) −0.026 (2) −0.0258 (14)
C11 0.0945 (15) 0.0814 (13) 0.121 (2) −0.0267 (10) 0.0057 (14) 0.0203 (13)
C12 0.0559 (9) 0.0510 (8) 0.0424 (10) −0.0014 (6) −0.0027 (7) 0.0088 (8)
C13 0.0541 (9) 0.0598 (9) 0.0496 (11) −0.0062 (7) −0.0040 (8) 0.0024 (8)
C14 0.0525 (9) 0.0445 (8) 0.0464 (10) −0.0003 (6) −0.0049 (7) −0.0009 (7)
C15 0.0525 (9) 0.0602 (9) 0.0544 (11) 0.0090 (7) −0.0011 (8) 0.0079 (8)
C16 0.0638 (11) 0.0705 (10) 0.0619 (12) 0.0078 (8) 0.0060 (9) 0.0169 (9)
C17 0.0697 (11) 0.0565 (9) 0.0527 (11) 0.0068 (8) −0.0113 (9) 0.0048 (8)
C18 0.0590 (11) 0.1087 (15) 0.0901 (16) −0.0019 (10) −0.0229 (11) 0.0293 (13)
C19 0.0559 (11) 0.1068 (14) 0.0806 (15) −0.0106 (9) −0.0092 (10) 0.0308 (12)
C20 0.0637 (9) 0.0546 (9) 0.0392 (10) 0.0039 (7) −0.0034 (8) 0.0036 (7)
C21 0.0785 (11) 0.0597 (9) 0.0562 (12) −0.0025 (8) −0.0077 (9) −0.0014 (8)
C22 0.1206 (16) 0.0589 (11) 0.0655 (14) 0.0083 (10) −0.0084 (12) −0.0098 (10)
C23 0.1229 (17) 0.0889 (13) 0.0664 (15) 0.0319 (12) 0.0108 (13) −0.0087 (11)
C24 0.0745 (11) 0.0834 (12) 0.0579 (13) 0.0147 (9) 0.0083 (10) 0.0063 (10)

Geometric parameters (Å, °)

Cl1—C17 1.7334 (17) C20—C24 1.527 (2)
O1—C1 1.361 (2) C21—C22 1.524 (2)
O1—C20 1.4633 (19) C22—C23 1.508 (3)
O2—C1 1.202 (2) C23—C24 1.530 (2)
O3—C12 1.3807 (19) C5—H5 0.930
O3—C13 1.3681 (18) C7—H7 0.930
O4—C13 1.195 (2) C9—H91 0.960
C1—C2 1.475 (2) C9—H92 0.960
C2—C3 1.483 (2) C9—H93 0.960
C2—C12 1.317 (2) C10—H101 0.960
C3—C4 1.393 (2) C10—H102 0.960
C3—C8 1.396 (2) C10—H103 0.960
C4—C5 1.389 (2) C11—H111 0.960
C4—C9 1.507 (2) C11—H112 0.960
C5—C6 1.386 (2) C11—H113 0.960
C6—C7 1.369 (3) C15—H15 0.930
C6—C10 1.524 (3) C16—H16 0.930
C7—C8 1.383 (2) C18—H18 0.930
C8—C11 1.504 (2) C19—H19 0.930
C12—C20 1.4978 (19) C21—H211 0.970
C13—C14 1.471 (2) C21—H212 0.970
C14—C15 1.366 (2) C22—H221 0.970
C14—C19 1.380 (2) C22—H222 0.970
C15—C16 1.377 (2) C23—H231 0.970
C16—C17 1.368 (2) C23—H232 0.970
C17—C18 1.357 (2) C24—H241 0.970
C18—C19 1.378 (2) C24—H242 0.970
C20—C21 1.520 (2)
C1—O1—C20 110.04 (11) C6—C5—H5 119.0
C12—O3—C13 117.84 (11) C6—C7—H7 118.5
O1—C1—O2 121.16 (14) C8—C7—H7 118.5
O1—C1—C2 109.66 (14) C4—C9—H91 109.5
O2—C1—C2 129.18 (15) C4—C9—H92 109.5
C1—C2—C3 123.33 (15) C4—C9—H93 109.5
C1—C2—C12 105.54 (13) H91—C9—H92 109.5
C3—C2—C12 131.13 (14) H91—C9—H93 109.5
C2—C3—C4 119.47 (13) H92—C9—H93 109.5
C2—C3—C8 119.99 (14) C6—C10—H101 109.5
C4—C3—C8 120.52 (14) C6—C10—H102 109.5
C3—C4—C5 118.58 (15) C6—C10—H103 109.5
C3—C4—C9 121.32 (14) H101—C10—H102 109.5
C5—C4—C9 120.11 (16) H101—C10—H103 109.5
C4—C5—C6 121.98 (19) H102—C10—H103 109.5
C5—C6—C7 117.69 (18) C8—C11—H111 109.5
C5—C6—C10 120.8 (2) C8—C11—H112 109.5
C7—C6—C10 121.5 (2) C8—C11—H113 109.5
C6—C7—C8 122.96 (18) H111—C11—H112 109.5
C3—C8—C7 118.25 (17) H111—C11—H113 109.5
C3—C8—C11 121.71 (15) H112—C11—H113 109.5
C7—C8—C11 120.04 (16) C14—C15—H15 119.7
O3—C12—C2 128.10 (12) C16—C15—H15 119.7
O3—C12—C20 118.17 (13) C15—C16—H16 120.2
C2—C12—C20 113.69 (13) C17—C16—H16 120.2
O3—C13—O4 121.26 (15) C17—C18—H18 120.1
O3—C13—C14 112.40 (13) C19—C18—H18 120.1
O4—C13—C14 126.30 (15) C14—C19—H19 119.8
C13—C14—C15 122.92 (13) C18—C19—H19 119.8
C13—C14—C19 117.99 (14) C20—C21—H211 111.2
C15—C14—C19 119.05 (15) C20—C21—H212 111.2
C14—C15—C16 120.62 (14) C22—C21—H211 111.2
C15—C16—C17 119.63 (15) C22—C21—H212 111.2
Cl1—C17—C16 120.17 (13) H211—C21—H212 109.5
Cl1—C17—C18 119.25 (13) C21—C22—H221 110.9
C16—C17—C18 120.53 (16) C21—C22—H222 110.9
C17—C18—C19 119.79 (16) C23—C22—H221 110.9
C14—C19—C18 120.34 (16) C23—C22—H222 110.9
O1—C20—C12 101.01 (11) H221—C22—H222 109.5
O1—C20—C21 108.02 (12) C22—C23—H231 110.3
O1—C20—C24 109.27 (12) C22—C23—H232 110.3
C12—C20—C21 115.86 (12) C24—C23—H231 110.3
C12—C20—C24 117.98 (12) C24—C23—H232 110.3
C21—C20—C24 104.32 (12) H231—C23—H232 109.5
C20—C21—C22 102.49 (13) C20—C24—H241 110.3
C21—C22—C23 103.88 (14) C20—C24—H242 110.3
C22—C23—C24 106.19 (16) C23—C24—H241 110.3
C20—C24—C23 106.01 (14) C23—C24—H242 110.3
C4—C5—H5 119.0 H241—C24—H242 109.5
C1—O1—C20—C12 1.70 (14) C5—C6—C7—C8 −1.2 (3)
C1—O1—C20—C21 −120.35 (12) C10—C6—C7—C8 178.4 (2)
C1—O1—C20—C24 126.75 (12) C6—C7—C8—C3 0.1 (2)
C20—O1—C1—O2 179.74 (14) C6—C7—C8—C11 179.8 (2)
C20—O1—C1—C2 −0.57 (16) O3—C12—C20—O1 175.69 (11)
C12—O3—C13—O4 −5.0 (2) O3—C12—C20—C21 −67.91 (18)
C12—O3—C13—C14 176.84 (12) O3—C12—C20—C24 56.74 (18)
C13—O3—C12—C2 −71.27 (19) C2—C12—C20—O1 −2.47 (16)
C13—O3—C12—C20 110.86 (14) C2—C12—C20—C21 113.92 (16)
O1—C1—C2—C3 178.86 (12) C2—C12—C20—C24 −121.43 (16)
O1—C1—C2—C12 −1.01 (16) O3—C13—C14—C15 −9.4 (2)
O2—C1—C2—C3 −1.5 (2) O3—C13—C14—C19 168.51 (14)
O2—C1—C2—C12 178.65 (16) O4—C13—C14—C15 172.61 (16)
C1—C2—C3—C4 −70.0 (2) O4—C13—C14—C19 −9.5 (2)
C1—C2—C3—C8 108.53 (18) C13—C14—C15—C16 179.61 (14)
C1—C2—C12—O3 −175.75 (13) C13—C14—C19—C18 −179.44 (16)
C1—C2—C12—C20 2.20 (17) C15—C14—C19—C18 −1.5 (2)
C3—C2—C12—O3 4.4 (2) C19—C14—C15—C16 1.7 (2)
C3—C2—C12—C20 −177.65 (14) C14—C15—C16—C17 −0.2 (2)
C12—C2—C3—C4 109.8 (2) C15—C16—C17—Cl1 −178.99 (12)
C12—C2—C3—C8 −71.6 (2) C15—C16—C17—C18 −1.7 (2)
C2—C3—C4—C5 178.81 (15) Cl1—C17—C18—C19 179.29 (14)
C2—C3—C4—C9 −1.5 (2) C16—C17—C18—C19 1.9 (2)
C2—C3—C8—C7 −178.18 (17) C17—C18—C19—C14 −0.4 (2)
C2—C3—C8—C11 2.1 (2) O1—C20—C21—C22 −78.01 (15)
C4—C3—C8—C7 0.4 (2) O1—C20—C24—C23 94.02 (15)
C4—C3—C8—C11 −179.37 (17) C12—C20—C21—C22 169.61 (14)
C8—C3—C4—C5 0.3 (2) C12—C20—C24—C23 −151.47 (14)
C8—C3—C4—C9 179.99 (14) C21—C20—C24—C23 −21.28 (17)
C3—C4—C5—C6 −1.4 (2) C24—C20—C21—C22 38.17 (16)
C9—C4—C5—C6 178.88 (19) C20—C21—C22—C23 −40.81 (18)
C4—C5—C6—C7 1.8 (3) C21—C22—C23—C24 27.7 (2)
C4—C5—C6—C10 −177.7 (2) C22—C23—C24—C20 −4.02 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C24—H242···O2i 0.97 2.57 3.475 (2) 155

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2154).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Bayer Aktiengesellschaft. (1995). WO patent No. 9 504 719A1.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Yu, C.-M., Zhou, Y., Cheng, J.-L. & Zhao, J.-H. (2009). Acta Cryst. E65, o183. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006503/si2154sup1.cif

e-65-0o705-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006503/si2154Isup2.hkl

e-65-0o705-Isup2.hkl (241.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES