Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Nov;86(5):1556–1564. doi: 10.1172/JCI114875

Macrophages cultured in vitro release leukotriene B4 and neutrophil attractant/activation protein (interleukin 8) sequentially in response to stimulation with lipopolysaccharide and zymosan.

J A Rankin 1, I Sylvester 1, S Smith 1, T Yoshimura 1, E J Leonard 1
PMCID: PMC296903  PMID: 2173722

Abstract

The capacity of lipopolysaccharide (LPS), zymosan, and calcium ionophore A23187 to induce neutrophil chemotactic activity (NCA), leukotriene B4 (LTB4), and neutrophil attractant/activation protein (NAP-1) release from human alveolar macrophages (AM) retrieved from normal nonsmokers was evaluated. LPS induced a dose-dependent release of LTB4 that began by 1 h, 4.0 +/- 3.2 ng/10(6) viable AM; peaked at 3 h, 24.7 +/- 13.5 ng/10(6) viable AM; and decreased by 24 h, 1.2 +/- 1.0 ng/10(6) viable AM (n = 8). Quantities of LTB4 in cell-free supernatants of AM stimulated with LPS were determined by reverse-phase high-performance liquid chromatography and corresponded well with results obtained by radioimmunoassay. By contrast, NAP-1 release began approximately 3-5 h after stimulation of AM with LPS, 197 +/- 192 ng/ml, and peaked at 24 h, 790 +/- 124 ng/ml. Release of NAP-1 was stimulus specific because A23187 evoked the release of LTB4 but not NAP-1, whereas LPS and zymosan induced the release of both LTB4 and NAP-1. The appearance of neutrophil chemotactic activity in supernatants of AM challenged with LPS for 3 h could be explained completely by the quantities of LTB4 present. After stimulation with LPS or zymosan for 24 h, AM had metabolized almost all generated LTB4. Preincubation of AM with nordihydroguiaretic acid (10(-4) M) completely abolished the appearance of NCA, LTB4, and NAP-1 in supernatants of AM challenged with LPS. Therefore, LPS and zymosan particles were potent stimuli of the sequential release of LTB4 and NAP-1 from AM.

Full text

PDF
1556

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artalejo A. R., García-Sancho J. Mobilization of intracellular calcium by extracellular ATP and by calcium ionophores in the Ehrlich ascites-tumour cell. Biochim Biophys Acta. 1988 Jun 7;941(1):48–54. doi: 10.1016/0005-2736(88)90212-x. [DOI] [PubMed] [Google Scholar]
  2. Balter M. S., Toews G. B., Peters-Golden M. Different patterns of arachidonate metabolism in autologous human blood monocytes and alveolar macrophages. J Immunol. 1989 Jan 15;142(2):602–608. [PubMed] [Google Scholar]
  3. Bigby T. D., Holtzman M. J. Enhanced 5-lipoxygenase activity in lung macrophages compared to monocytes from normal subjects. J Immunol. 1987 Mar 1;138(5):1546–1550. [PubMed] [Google Scholar]
  4. Brown G. P., Monick M. M., Hunninghake G. W. Human alveolar macrophage arachidonic acid metabolism. Am J Physiol. 1988 Jun;254(6 Pt 1):C809–C815. doi: 10.1152/ajpcell.1988.254.6.C809. [DOI] [PubMed] [Google Scholar]
  5. Crystal R. G., Bitterman P. B., Rennard S. I., Hance A. J., Keogh B. A. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract (first of two parts). N Engl J Med. 1984 Jan 19;310(3):154–166. doi: 10.1056/NEJM198401193100304. [DOI] [PubMed] [Google Scholar]
  6. Crystal R. G., Bitterman P. B., Rennard S. I., Hance A. J., Keogh B. A. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract. N Engl J Med. 1984 Jan 26;310(4):235–244. doi: 10.1056/NEJM198401263100406. [DOI] [PubMed] [Google Scholar]
  7. Czarnetzki B. M., Rosenbach T. Chemotaxis of human neutrophils and eosinophils towards leukotriene B4 and its 20-w-oxidation products in vitro. Prostaglandins. 1986 May;31(5):851–858. doi: 10.1016/0090-6980(86)90018-3. [DOI] [PubMed] [Google Scholar]
  8. Czop J. K., Austen K. F. A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol. 1985 Apr;134(4):2588–2593. [PubMed] [Google Scholar]
  9. Czop J. K., Austen K. F. Generation of leukotrienes by human monocytes upon stimulation of their beta-glucan receptor during phagocytosis. Proc Natl Acad Sci U S A. 1985 May;82(9):2751–2755. doi: 10.1073/pnas.82.9.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Czop J. K., Fearon D. T., Austen K. F. Opsonin-independent phagocytosis of activators of the alternative complement pathway by human monocytes. J Immunol. 1978 Apr;120(4):1132–1138. [PubMed] [Google Scholar]
  11. Dianzani F., Monahan T. M., Georgiades J., Alperin J. B. Human immune interferon: induction in lymphoid cells by a calcium ionophore. Infect Immun. 1980 Aug;29(2):561–563. doi: 10.1128/iai.29.2.561-563.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eschenbacher W. L., Gravelyn T. R. A technique for isolated airway segment lavage. Chest. 1987 Jul;92(1):105–109. doi: 10.1378/chest.92.1.105. [DOI] [PubMed] [Google Scholar]
  13. Fels A. O., Pawlowski N. A., Cramer E. B., King T. K., Cohn Z. A., Scott W. A. Human alveolar macrophages produce leukotriene B4. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7866–7870. doi: 10.1073/pnas.79.24.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ford-Hutchinson A. W., Bray M. A., Doig M. V., Shipley M. E., Smith M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980 Jul 17;286(5770):264–265. doi: 10.1038/286264a0. [DOI] [PubMed] [Google Scholar]
  15. Foreman J. C., Mongar J. L., Gomperts B. D. Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature. 1973 Oct 5;245(5423):249–251. doi: 10.1038/245249a0. [DOI] [PubMed] [Google Scholar]
  16. Geller R. L., Gromo G., Inverardi L., Ferrero E., Bach F. H. Stepwise activation of T cells. Role of the calcium ionophore A23187. J Immunol. 1987 Dec 15;139(12):3930–3934. [PubMed] [Google Scholar]
  17. Goetzl E. J. Mediators of immediate hypersensitivity derived from arachidonic acid. N Engl J Med. 1980 Oct 2;303(14):822–825. doi: 10.1056/NEJM198010023031421. [DOI] [PubMed] [Google Scholar]
  18. Hocking W. G., Golde D. W. The pulmonary-alveolar macrophage (second of two parts). N Engl J Med. 1979 Sep 20;301(12):639–645. doi: 10.1056/NEJM197909203011205. [DOI] [PubMed] [Google Scholar]
  19. Hunninghake G. W., Gadek J. E., Fales H. M., Crystal R. G. Human alveolar macrophage-derived chemotactic factor for neutrophils. Stimuli and partial characterization. J Clin Invest. 1980 Sep;66(3):473–483. doi: 10.1172/JCI109878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jensen P., Winger L., Rasmussen H., Nowell P. The mitogenic effect of A23187 in human peripheral lymphocytes. Biochim Biophys Acta. 1977 Feb 28;496(2):374–383. doi: 10.1016/0304-4165(77)90320-8. [DOI] [PubMed] [Google Scholar]
  21. Kaever V., Damerau B., Wessel K., Resch K. Biological properties of dihydro-leukotriene B4, an alternative leukotriene B4 metabolite. FEBS Lett. 1988 Apr 25;231(2):385–388. doi: 10.1016/0014-5793(88)80855-x. [DOI] [PubMed] [Google Scholar]
  22. Kaever V., Martin M., Fauler J., Marx K. H., Resch K. A novel metabolic pathway for leukotriene B4 in different cell types: primary reduction of a double bond. Biochim Biophys Acta. 1987 Dec 14;922(3):337–344. doi: 10.1016/0005-2760(87)90056-7. [DOI] [PubMed] [Google Scholar]
  23. Larsen C. G., Anderson A. O., Appella E., Oppenheim J. J., Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 1989 Mar 17;243(4897):1464–1466. doi: 10.1126/science.2648569. [DOI] [PubMed] [Google Scholar]
  24. Laviolette M., Coulombe R., Picard S., Braquet P., Borgeat P. Decreased leukotriene B4 synthesis in smokers' alveolar macrophages in vitro. J Clin Invest. 1986 Jan;77(1):54–60. doi: 10.1172/JCI112301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lei M. G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. I. Detection of lipopolysaccharide-binding sites on splenocytes and splenocyte subpopulations. J Immunol. 1988 Aug 1;141(3):996–1005. [PubMed] [Google Scholar]
  26. Lei M. G., Morrison D. C. Specific endotoxic lipopolysaccharide-binding proteins on murine splenocytes. II. Membrane localization and binding characteristics. J Immunol. 1988 Aug 1;141(3):1006–1011. [PubMed] [Google Scholar]
  27. Levin J., Poore T. E., Zauber N. P., Oser R. S. Detection of endotoxin in the blood of patients with sepsis due to gran-negative bacteria. N Engl J Med. 1970 Dec 10;283(24):1313–1316. doi: 10.1056/NEJM197012102832404. [DOI] [PubMed] [Google Scholar]
  28. Lüderitz T., Brandenburg K., Seydel U., Roth A., Galanos C., Rietschel E. T. Structural and physicochemical requirements of endotoxins for the activation of arachidonic acid metabolism in mouse peritoneal macrophages in vitro. Eur J Biochem. 1989 Jan 15;179(1):11–16. doi: 10.1111/j.1432-1033.1989.tb14514.x. [DOI] [PubMed] [Google Scholar]
  29. Martin T. R., Altman L. C., Albert R. K., Henderson W. R. Leukotriene B4 production by the human alveolar macrophage: a potential mechanism for amplifying inflammation in the lung. Am Rev Respir Dis. 1984 Jan;129(1):106–111. doi: 10.1164/arrd.1984.129.1.106. [DOI] [PubMed] [Google Scholar]
  30. Martin T. R., Raugi G., Merritt T. L., Henderson W. R., Jr Relative contribution of leukotriene B4 to the neutrophil chemotactic activity produced by the resident human alveolar macrophage. J Clin Invest. 1987 Oct;80(4):1114–1124. doi: 10.1172/JCI113168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matsushima K., Morishita K., Yoshimura T., Lavu S., Kobayashi Y., Lew W., Appella E., Kung H. F., Leonard E. J., Oppenheim J. J. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med. 1988 Jun 1;167(6):1883–1893. doi: 10.1084/jem.167.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Merrill W. W., Naegel G. P., Matthay R. A., Reynolds H. Y. Alveolar macrophage-derived chemotactic factor: kinetics of in vitro production and partial characterization. J Clin Invest. 1980 Feb;65(2):268–276. doi: 10.1172/JCI109668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nagy L., Lee T. H., Goetzl E. J., Pickett W. C., Kay A. B. Complement receptor enhancement and chemotaxis of human neutrophils and eosinophils by leukotrienes and other lipoxygenase products. Clin Exp Immunol. 1982 Mar;47(3):541–547. [PMC free article] [PubMed] [Google Scholar]
  34. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rankin J. A., Schrader C. E., Smith S. M., Lewis R. A. Recombinant interferon-gamma primes alveolar macrophages cultured in vitro for the release of leukotriene B4 in response to IgG stimulation. J Clin Invest. 1989 May;83(5):1691–1700. doi: 10.1172/JCI114069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reynolds H. Y., Chrétien J. Respiratory tract fluids: analysis of content and contemporary use in understanding lung diseases. Dis Mon. 1984 Feb;30(5):1–103. doi: 10.1016/0011-5029(84)90008-7. [DOI] [PubMed] [Google Scholar]
  37. Schröder J. M., Mrowietz U., Morita E., Christophers E. Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J Immunol. 1987 Nov 15;139(10):3474–3483. [PubMed] [Google Scholar]
  38. Schönfeld W., Schlüter B., Hilger R., König W. Leukotriene generation and metabolism in isolated human lung macrophages. Immunology. 1988 Dec;65(4):529–536. [PMC free article] [PubMed] [Google Scholar]
  39. Showell H. J., Naccache P. H., Borgeat P., Picard S., Vallerand P., Becker E. L., Sha'afi R. I. Characterization of the secretory activity of leukotriene B4 toward rabbit neutrophils. J Immunol. 1982 Feb;128(2):811–816. [PubMed] [Google Scholar]
  40. Sibille Y., Merrill W. W., Naegel G. P., Care S. B., Cooper J. A., Jr, Reynolds H. Y. Human alveolar macrophages release a factor that inhibits phagocyte function. Am J Respir Cell Mol Biol. 1989 Nov;1(5):407–416. doi: 10.1165/ajrcmb/1.5.407. [DOI] [PubMed] [Google Scholar]
  41. Smith M. J., Ford-Hutchinson A. W., Bray M. A. Leukotriene B: a potential mediator of inflammation. J Pharm Pharmacol. 1980 Jul;32(7):517–518. doi: 10.1111/j.2042-7158.1980.tb12985.x. [DOI] [PubMed] [Google Scholar]
  42. Stephenson A. H., Lonigro A. J., Hyers T. M., Webster R. O., Fowler A. A. Increased concentrations of leukotrienes in bronchoalveolar lavage fluid of patients with ARDS or at risk for ARDS. Am Rev Respir Dis. 1988 Sep;138(3):714–719. doi: 10.1164/ajrccm/138.3.714. [DOI] [PubMed] [Google Scholar]
  43. Sylvester I., Rankin J. A., Yoshimura T., Tanaka S., Leonard E. J. Secretion of neutrophil attractant/activation protein by lipopolysaccharide-stimulated lung macrophages determined by both enzyme-linked immunosorbent assay and N-terminal sequence analysis. Am Rev Respir Dis. 1990 Mar;141(3):683–688. doi: 10.1164/ajrccm/141.3.683. [DOI] [PubMed] [Google Scholar]
  44. Van Damme J., Van Beeumen J., Opdenakker G., Billiau A. A novel, NH2-terminal sequence-characterized human monokine possessing neutrophil chemotactic, skin-reactive, and granulocytosis-promoting activity. J Exp Med. 1988 Apr 1;167(4):1364–1376. doi: 10.1084/jem.167.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Walz A., Peveri P., Aschauer H., Baggiolini M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun. 1987 Dec 16;149(2):755–761. doi: 10.1016/0006-291x(87)90432-3. [DOI] [PubMed] [Google Scholar]
  46. Yoshimura T., Matsushima K., Oppenheim J. J., Leonard E. J. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol. 1987 Aug 1;139(3):788–793. [PubMed] [Google Scholar]
  47. Yoshimura T., Matsushima K., Tanaka S., Robinson E. A., Appella E., Oppenheim J. J., Leonard E. J. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9233–9237. doi: 10.1073/pnas.84.24.9233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yoshimura T., Robinson E. A., Appella E., Matsushima K., Showalter S. D., Skeel A., Leonard E. J. Three forms of monocyte-derived neutrophil chemotactic factor (MDNCF) distinguished by different lengths of the amino-terminal sequence. Mol Immunol. 1989 Jan;26(1):87–93. doi: 10.1016/0161-5890(89)90024-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES