Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):m452. doi: 10.1107/S1600536809008022

Diaqua­bis(2,2′-biimidazole)zinc(II) 4,4′-di­carboxybiphenyl-3,3′-di­carboxyl­ate

Jie Kang a,b,*, Chang-Cang Huang b, Zhi-Qing Jiang a, Sheng Huang a, Shuang-Lu Huang a
PMCID: PMC2969031  PMID: 21582388

Abstract

In the title compound, [Zn(C6H6N4)2(H2O)2](C16H8O8), the ZnII atom, located on an inversion centre, is coordinated by two aqua and two bidentate biimidizole ligands, resulting in a slightly distorted octa­hedral ZnO2N4 geometry. The four N atoms from the two biimidizole ligands lie in the equatorial plane and the two aqua O atoms lie in the axial sites. The biphenyl­tetra­carboxyl­ate anion also lies on an inversion centre. The ZnII complex cation and the anion are held together by N—H⋯O hydrogen bonds, forming a zigzag chain along [2Inline graphic1]. The chains are further connected by water mol­ecules via O—H⋯O hydrogen bonds.

Related literature

For general background, see: Hagrman et al. (1999); Jia et al. (2007); Kortz et al. (2003).graphic file with name e-65-0m452-scheme1.jpg

Experimental

Crystal data

  • [Zn(C6H6N4)2(H2O)2](C16H8O8)

  • M r = 697.92

  • Triclinic, Inline graphic

  • a = 8.2133 (16) Å

  • b = 9.810 (2) Å

  • c = 10.498 (2) Å

  • α = 63.72 (3)°

  • β = 68.00 (3)°

  • γ = 83.85 (3)°

  • V = 701.4 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.894, T max = 0.928

  • 5074 measured reflections

  • 2674 independent reflections

  • 2579 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.096

  • S = 1.00

  • 2674 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008022/is2385sup1.cif

e-65-0m452-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008022/is2385Isup2.hkl

e-65-0m452-Isup2.hkl (131.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—O1W 2.135 (2)
Zn1—N3 2.1419 (18)
Zn1—N2 2.1625 (19)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 1.94 2.802 (3) 169
N4—H4A⋯O2i 0.90 1.89 2.791 (3) 176
O1W—H1W⋯O4ii 0.81 1.90 2.683 (2) 162
O1W—H2W⋯O2iii 0.79 1.98 2.751 (3) 164
O3—H3A⋯O1 0.93 (3) 1.52 (3) 2.434 (3) 165 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Foundation of the Education Committee of Fujian Province (JA08103), and the Foundation of Daiichi Pharmaceutical (Beijing) Co, Ltd. (No. 06B004).

supplementary crystallographic information

Comment

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs but also for their potential applications in the areas of catalysis, separation, gas absorption, molecular recognition, nonlinear optics and magnetochemistry (Hagrman et al., 1999; Jia et al., 2007; Kortz et al., 2003). In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, the ZnII atom (site symmetry 1) is bonded to two aqua and two bidentate biimidizole ligands, to result in a slightly distorted octahedral ZnO2N4 geometry for the central metal. The ZnII atom lies on an inversion centre, as a consequence which the asymmetric unit comprises a half of the molecule. The four nitrogen atoms belonging to two biimidizole ligands lie in the equatorial plane and the two aqua oxygen atoms lie in the axial coordination sites. The bonds around Zn is listed in Table 1. The 3,3',4,4'-biphenyl tetracarboxylate acts as negative electron balance. With two kinds of hydrogen bonds of N4—H4A···O2 and N1—H1A···O1, a zigzag chain is formed. Furthermore, a 3-D frameworks is constructed with O1W—H2W···O2 and O1W—H1W···O4 along the c axis, shown in Fig. 2.

Experimental

All chemicals and Teflon-lined stainless steel autoclave were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. A mixture of 3,3',4,4'-biphenyl tetracarboxylic acid (0.1 mmol), zinc(II) sulfate (0.1 mmol), and diimdazole (0.1 mmol) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals suitable for X-ray were obtained.

Refinement

Atom H3A on O3 was located in a difference Fourier map and refined with an O—H distance [0.93 (1) Å] restraint. O-bound H atoms except H3A and N-bound H atoms were located in a difference Fourier map and were constrained as riding, with Uiso(H) = 1.2Ueq(O or N). Other H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular components of the title compound, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2.

Fig. 2.

A packing diagram of the title compound formed with the hydrogen bonds (dashed lines).

Crystal data

[Zn(C6H6N4)2(H2O)2](C16H8O8) Z = 1
Mr = 697.92 F(000) = 358
Triclinic, P1 Dx = 1.652 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2133 (16) Å Cell parameters from 2674 reflections
b = 9.810 (2) Å θ = 3.4–26.0°
c = 10.498 (2) Å µ = 0.95 mm1
α = 63.72 (3)° T = 293 K
β = 68.00 (3)° Block, colorless
γ = 83.85 (3)° 0.12 × 0.10 × 0.08 mm
V = 701.4 (2) Å3

Data collection

Bruker APEXII CCD diffractometer 2674 independent reflections
Radiation source: fine-focus sealed tube 2579 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→10
Tmin = 0.894, Tmax = 0.928 k = −12→12
5074 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.052P)2 + 0.4235P] where P = (Fo2 + 2Fc2)/3
2674 reflections (Δ/σ)max = 0.018
218 parameters Δρmax = 0.28 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.5000 0.0000 0.03706 (14)
C1 0.8917 (3) −0.0165 (3) 0.6897 (3) 0.0359 (5)
C2 0.7565 (3) 0.0726 (2) 0.6220 (2) 0.0299 (4)
C3 0.6742 (3) −0.0082 (2) 0.5790 (2) 0.0317 (4)
H3 0.7113 −0.1040 0.5887 0.038*
C4 0.5400 (3) 0.0464 (2) 0.5224 (2) 0.0300 (4)
C5 0.4858 (3) 0.1890 (3) 0.5114 (3) 0.0399 (5)
H5 0.3941 0.2288 0.4771 0.048*
C6 0.5668 (3) 0.2719 (2) 0.5509 (3) 0.0392 (5)
H6 0.5280 0.3673 0.5415 0.047*
C7 0.7037 (3) 0.2197 (2) 0.6041 (2) 0.0305 (4)
C8 0.7779 (3) 0.3350 (3) 0.6322 (3) 0.0375 (5)
C9 0.7614 (3) 0.3778 (2) 0.1372 (2) 0.0328 (4)
C10 0.7227 (3) 0.2594 (2) 0.1042 (2) 0.0336 (5)
C11 0.5985 (3) 0.1497 (3) 0.0235 (3) 0.0436 (6)
H19 0.5263 0.1307 −0.0179 0.052*
C12 0.7149 (4) 0.0538 (3) 0.0759 (3) 0.0473 (6)
H20 0.7368 −0.0416 0.0771 0.057*
C13 0.8671 (3) 0.5175 (3) 0.2050 (3) 0.0440 (6)
H21 0.9329 0.5524 0.2414 0.053*
C14 0.7403 (3) 0.5901 (3) 0.1520 (3) 0.0436 (6)
H22 0.7041 0.6853 0.1456 0.052*
N1 0.7933 (3) 0.1248 (2) 0.1265 (2) 0.0406 (4)
H1A 0.8659 0.0821 0.1742 0.049*
N2 0.6044 (3) 0.2788 (2) 0.0414 (2) 0.0366 (4)
N3 0.6732 (2) 0.5025 (2) 0.1091 (2) 0.0372 (4)
N4 0.8794 (3) 0.3831 (2) 0.1946 (2) 0.0402 (4)
H4A 0.9538 0.3110 0.2211 0.048*
O1 0.9901 (3) 0.0489 (2) 0.7164 (3) 0.0592 (5)
O2 0.9025 (2) −0.15120 (19) 0.7137 (2) 0.0528 (5)
O3 0.9163 (3) 0.3100 (2) 0.6670 (3) 0.0576 (5)
O4 0.7063 (3) 0.4532 (2) 0.6186 (2) 0.0536 (5)
O1W 0.2826 (2) 0.4101 (2) 0.2126 (2) 0.0517 (5)
H1W 0.2680 0.4378 0.2782 0.078*
H2W 0.2367 0.3277 0.2477 0.078*
H3A 0.962 (5) 0.217 (2) 0.673 (5) 0.100 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0416 (2) 0.0294 (2) 0.0549 (3) 0.00961 (15) −0.03317 (18) −0.01971 (17)
C1 0.0359 (11) 0.0351 (11) 0.0469 (12) 0.0071 (9) −0.0249 (10) −0.0197 (10)
C2 0.0321 (10) 0.0270 (10) 0.0351 (10) 0.0038 (8) −0.0184 (9) −0.0129 (8)
C3 0.0346 (11) 0.0260 (10) 0.0424 (11) 0.0073 (8) −0.0229 (9) −0.0155 (9)
C4 0.0355 (11) 0.0254 (10) 0.0351 (10) 0.0042 (8) −0.0201 (9) −0.0130 (8)
C5 0.0489 (13) 0.0323 (11) 0.0604 (14) 0.0156 (10) −0.0411 (12) −0.0242 (11)
C6 0.0502 (13) 0.0280 (11) 0.0542 (13) 0.0122 (10) −0.0320 (11) −0.0220 (10)
C7 0.0349 (11) 0.0284 (10) 0.0343 (10) 0.0029 (8) −0.0174 (9) −0.0152 (8)
C8 0.0452 (13) 0.0319 (11) 0.0446 (12) 0.0026 (9) −0.0226 (10) −0.0195 (10)
C9 0.0317 (10) 0.0327 (11) 0.0402 (11) 0.0070 (8) −0.0200 (9) −0.0166 (9)
C10 0.0349 (11) 0.0291 (10) 0.0396 (11) 0.0059 (8) −0.0182 (9) −0.0145 (9)
C11 0.0566 (15) 0.0321 (11) 0.0559 (14) 0.0036 (10) −0.0337 (12) −0.0201 (11)
C12 0.0608 (16) 0.0309 (12) 0.0636 (16) 0.0106 (11) −0.0330 (13) −0.0253 (11)
C13 0.0460 (13) 0.0461 (14) 0.0579 (15) 0.0050 (11) −0.0316 (12) −0.0281 (12)
C14 0.0490 (14) 0.0380 (12) 0.0640 (15) 0.0105 (10) −0.0332 (12) −0.0308 (12)
N1 0.0456 (11) 0.0326 (10) 0.0545 (12) 0.0137 (8) −0.0324 (10) −0.0192 (9)
N2 0.0418 (10) 0.0300 (9) 0.0489 (11) 0.0083 (8) −0.0282 (9) −0.0181 (8)
N3 0.0394 (10) 0.0347 (10) 0.0532 (11) 0.0105 (8) −0.0302 (9) −0.0233 (9)
N4 0.0394 (10) 0.0393 (10) 0.0552 (12) 0.0115 (8) −0.0315 (9) −0.0223 (9)
O1 0.0659 (12) 0.0518 (11) 0.1051 (16) 0.0251 (9) −0.0670 (12) −0.0479 (11)
O2 0.0539 (11) 0.0330 (9) 0.0920 (14) 0.0141 (8) −0.0539 (11) −0.0248 (9)
O3 0.0620 (12) 0.0441 (10) 0.1003 (15) 0.0128 (9) −0.0549 (12) −0.0412 (11)
O4 0.0706 (12) 0.0399 (10) 0.0807 (13) 0.0161 (9) −0.0472 (11) −0.0387 (9)
O1W 0.0637 (12) 0.0427 (9) 0.0564 (11) −0.0089 (8) −0.0204 (9) −0.0268 (8)

Geometric parameters (Å, °)

Zn1—O1W 2.135 (2) C8—O3 1.288 (3)
Zn1—O1Wi 2.135 (2) C9—N3 1.326 (3)
Zn1—N3i 2.1419 (18) C9—N4 1.334 (3)
Zn1—N3 2.1419 (18) C9—C10 1.445 (3)
Zn1—N2i 2.1625 (19) C10—N2 1.321 (3)
Zn1—N2 2.1625 (19) C10—N1 1.341 (3)
C1—O2 1.231 (3) C11—C12 1.358 (4)
C1—O1 1.258 (3) C11—N2 1.368 (3)
C1—C2 1.528 (3) C11—H19 0.9300
C2—C3 1.395 (3) C12—N1 1.364 (3)
C2—C7 1.411 (3) C12—H20 0.9300
C3—C4 1.392 (3) C13—C14 1.351 (4)
C3—H3 0.9300 C13—N4 1.361 (3)
C4—C5 1.390 (3) C13—H21 0.9300
C4—C4ii 1.490 (4) C14—N3 1.370 (3)
C5—C6 1.376 (3) C14—H22 0.9300
C5—H5 0.9300 N1—H1A 0.8755
C6—C7 1.391 (3) N4—H4A 0.9008
C6—H6 0.9300 O3—H3A 0.93 (3)
C7—C8 1.522 (3) O1W—H1W 0.8119
C8—O4 1.217 (3) O1W—H2W 0.7930
O1W—Zn1—O1Wi 180.00 (10) O4—C8—C7 119.0 (2)
O1W—Zn1—N3i 88.19 (8) O3—C8—C7 120.8 (2)
O1Wi—Zn1—N3i 91.81 (8) N3—C9—N4 111.41 (19)
O1W—Zn1—N3 91.81 (8) N3—C9—C10 119.57 (19)
O1Wi—Zn1—N3 88.19 (8) N4—C9—C10 129.0 (2)
N3i—Zn1—N3 180.0 N2—C10—N1 111.27 (19)
O1W—Zn1—N2i 87.51 (8) N2—C10—C9 119.67 (19)
O1Wi—Zn1—N2i 92.49 (8) N1—C10—C9 129.1 (2)
N3i—Zn1—N2i 79.56 (7) C12—C11—N2 109.2 (2)
N3—Zn1—N2i 100.44 (7) C12—C11—H19 125.4
O1W—Zn1—N2 92.49 (8) N2—C11—H19 125.4
O1Wi—Zn1—N2 87.51 (8) C11—C12—N1 106.6 (2)
N3i—Zn1—N2 100.44 (7) C11—C12—H20 126.7
N3—Zn1—N2 79.56 (7) N1—C12—H20 126.7
N2i—Zn1—N2 180.0 C14—C13—N4 106.3 (2)
O2—C1—O1 122.0 (2) C14—C13—H21 126.8
O2—C1—C2 117.98 (19) N4—C13—H21 126.8
O1—C1—C2 120.0 (2) C13—C14—N3 109.8 (2)
C3—C2—C7 118.34 (19) C13—C14—H22 125.1
C3—C2—C1 113.56 (18) N3—C14—H22 125.1
C7—C2—C1 128.06 (18) C10—N1—C12 107.05 (19)
C4—C3—C2 123.86 (19) C10—N1—H1A 128.5
C4—C3—H3 118.1 C12—N1—H1A 124.1
C2—C3—H3 118.1 C10—N2—C11 105.86 (19)
C5—C4—C3 116.66 (19) C10—N2—Zn1 110.26 (14)
C5—C4—C4ii 122.8 (2) C11—N2—Zn1 143.84 (16)
C3—C4—C4ii 120.6 (2) C9—N3—C14 105.05 (18)
C6—C5—C4 120.6 (2) C9—N3—Zn1 110.75 (14)
C6—C5—H5 119.7 C14—N3—Zn1 143.92 (16)
C4—C5—H5 119.7 C9—N4—C13 107.4 (2)
C5—C6—C7 123.1 (2) C9—N4—H4A 126.2
C5—C6—H6 118.5 C13—N4—H4A 126.4
C7—C6—H6 118.5 C8—O3—H3A 113 (3)
C6—C7—C2 117.43 (18) Zn1—O1W—H1W 121.7
C6—C7—C8 113.31 (18) Zn1—O1W—H2W 121.9
C2—C7—C8 129.25 (19) H1W—O1W—H2W 111.7
O4—C8—O3 120.1 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1iii 0.88 1.94 2.802 (3) 169
N4—H4A···O2iii 0.90 1.89 2.791 (3) 176
O1W—H1W···O4iv 0.81 1.90 2.683 (2) 162
O1W—H2W···O2ii 0.79 1.98 2.751 (3) 164
O3—H3A···O1 0.93 (3) 1.52 (3) 2.434 (3) 165 (4)

Symmetry codes: (iii) −x+2, −y, −z+1; (iv) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2385).

References

  1. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [DOI] [PubMed]
  4. Jia, H.-P., Li, W., Ju, Z.-F. & Zhang, J. (2007). Inorg. Chem.10, 265–268.
  5. Kortz, U., Hamzeh, S. S. & Nasser, N. A. (2003). Chem. Eur. J.9, 2945–2952.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008022/is2385sup1.cif

e-65-0m452-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008022/is2385Isup2.hkl

e-65-0m452-Isup2.hkl (131.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES