Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):o792. doi: 10.1107/S1600536809008447

14-(2,3-Dichloro­phen­yl)-9,10-dimethyl­benzimidazo[1,2-a]benzo[f][1,8]naphthyridine-6-carbonitrile

Andrii V Tarasov a,*, Tatyana A Volovnenko a, Roman I Zubatyuk b, Oleg V Shishkin b, Yulian M Volovenko a
PMCID: PMC2969033  PMID: 21582516

Abstract

In the title compound, C27H16Cl2N4, the benzimidazo[1,2-a]benzo[f][1,8]naphthyridine system is nearly planar (r.m.s. deviation for all non-H atoms = 0.033 Å). The dichloro­phenyl substituent is rotated by −67.5 (2)° from this plane. In the crystal structure, mol­ecules form stacks along the crystallographic (100) direction due to π–π stacking inter­actions with a centroid–centroid distance of 3.4283 (9) Å.

Related literature

For the synthesis of the title compound and a series of similar compounds, see: Volovnenko et al. (2006). For 1,2-fused benzimidazo heterocycles and their fluorescence properties, see: Gokhale & Seshadri (1987); Rajagopal & Seshadri (1991). For the biological properties of isoquinoline derivatives, see: Shamma (1972); Kametami & Fukomoto (1981); Bijan & Basu (1965); Neumeyer & Weinhard (1970).graphic file with name e-65-0o792-scheme1.jpg

Experimental

Crystal data

  • C27H16Cl2N4

  • M r = 467.34

  • Triclinic, Inline graphic

  • a = 8.5588 (8) Å

  • b = 11.0751 (13) Å

  • c = 12.2332 (11) Å

  • α = 76.985 (9)°

  • β = 75.986 (8)°

  • γ = 85.438 (9)°

  • V = 1095.77 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.6 × 0.1 × 0.1 mm

Data collection

  • Oxford-Diffraction Xcalibur-3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.82, T max = 0.97

  • 20237 measured reflections

  • 4290 independent reflections

  • 2405 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.072

  • S = 1.01

  • 4290 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008447/sj2589sup1.cif

e-65-0o792-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008447/sj2589Isup2.hkl

e-65-0o792-Isup2.hkl (210.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the past few decades 1,2-fused benzimidazo heterocycles have attracted attention because of their fluorescent properties (Gokhale & Seshadri, 1987; Rajagopal & Seshadri 1991). On the other hand isoquinoline derivatives exhibit a wide range of biological effects and are of great interest to synthetic as well as pharmaceutical organic chemists (Shamma, 1972; Kametami & Fukomoto, 1981; Bijan & Basu, 1965; Neumeyer & Weinhard, 1970).

In a previous paper (Volovnenko et al., 2006) we have described the synthesis of a series of 14-arylbenzimidazo[1,2-a]benzo[f]-1,8-naphthyridine-6-carbonitriles. We report herein the crystal structure of the title compound, which is the derivative of the new heterocyclic system, benzimidazo[1,2-a]benzo[f]-1,8-naphthyridine.

The molecular structure of the title compound is illustrated in Fig. 1. The benzimidazo[1,2-a]benzo[f]-1,8-naphthyridine system is nearly planar (RMS deviation of the non-hydrogen atoms from mean plane is 0.033 Å). Benzene ring is rotated with respect to this plane (the C5—C6—C7—C23 torsion angle is -67.5 (2)°). This rotation results in the loss of conjugation between π systems of the heterocycle and benzene ring. In crystal molecules form stacked chains along the a axis (Fig. 2) due to stacking interactions between the π systems of the pentacyclic fragments. The distance between the parallel planes is 3.4186 (8) Å.

Experimental

The title compound was synthesized by the reaction of 3-chloro-1-(2,3-dichlorophenyl)isoquinoline-4-carbaldehyde (1 mmol) with (5,6-dimethyl-1H-benzimidazol-2-yl)acetonitrile (1 mmol) in dimethylformamide (3–4 ml). After refluxing for 3 h, the reaction mixture was left to stand for overnight. The resulting crude solid was filtered, washed twice with acetone (10 ml) and dried. Yield: 65%. Crystals suitable for X-ray analysis were obtained by slow crystallization from hot dimethylformamide.

Refinement

H-atoms were placed in calculated positions with d(C—H)=0.93–0.96 Å and refined using riding model with Uiso(H) = nUeq(C) (n = 1.2 for aromatic C—H and n = 1.5 for methyl groups).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Crystal packing of the title compound showing stacks along the a axis. Hydrogen atoms are not shown.

Crystal data

C27H16Cl2N4 Z = 2
Mr = 467.34 F(000) = 480
Triclinic, P1 Dx = 1.416 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 8.5588 (8) Å Cell parameters from 6294 reflections
b = 11.0751 (13) Å θ = 2.7–28.6°
c = 12.2332 (11) Å µ = 0.32 mm1
α = 76.985 (9)° T = 293 K
β = 75.986 (8)° Prism, pale orange
γ = 85.438 (9)° 0.6 × 0.1 × 0.1 mm
V = 1095.77 (19) Å3

Data collection

Oxford-Diffraction Xcalibur-3 diffractometer 4290 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2405 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 16.1827 pixels mm-1 θmax = 26.0°, θmin = 2.7°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −13→13
Tmin = 0.82, Tmax = 0.97 l = −15→15
20237 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.03P)2] where P = (Fo2 + 2Fc2)/3
4290 reflections (Δ/σ)max < 0.001
300 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.53369 (8) 0.08996 (5) 0.11087 (4) 0.07512 (19)
Cl2 0.55737 (9) 0.26410 (6) −0.13175 (4) 0.0980 (2)
N1 0.24410 (16) 0.07841 (12) 0.33502 (10) 0.0416 (4)
N2 0.15186 (16) −0.10485 (12) 0.46081 (10) 0.0380 (3)
N3 0.05348 (17) −0.29056 (13) 0.56580 (11) 0.0445 (4)
N4 0.1445 (2) −0.31290 (16) 0.85388 (14) 0.0799 (6)
C1 0.4249 (2) 0.22794 (16) 0.09828 (14) 0.0478 (5)
C2 0.4347 (2) 0.30496 (19) −0.01113 (14) 0.0553 (5)
C3 0.3485 (2) 0.41496 (19) −0.02191 (16) 0.0599 (6)
H3A 0.3550 0.4660 −0.0944 0.072*
C4 0.2526 (2) 0.45022 (18) 0.07372 (17) 0.0637 (6)
H4A 0.1933 0.5244 0.0653 0.076*
C5 0.2435 (2) 0.37670 (17) 0.18209 (15) 0.0575 (5)
H5A 0.1802 0.4023 0.2465 0.069*
C6 0.3291 (2) 0.26398 (16) 0.19503 (13) 0.0439 (4)
C7 0.3168 (2) 0.18469 (15) 0.31350 (13) 0.0411 (4)
C8 0.22786 (19) 0.00654 (15) 0.44182 (13) 0.0373 (4)
C9 0.1249 (2) −0.19032 (15) 0.56664 (13) 0.0388 (4)
C10 0.0316 (2) −0.27288 (15) 0.45439 (13) 0.0402 (4)
C11 0.0918 (2) −0.15919 (15) 0.38690 (13) 0.0388 (4)
C12 0.0814 (2) −0.12061 (16) 0.27243 (14) 0.0469 (5)
H12A 0.1221 −0.0450 0.2283 0.056*
C13 0.0089 (2) −0.19800 (17) 0.22635 (14) 0.0506 (5)
C14 −0.0526 (2) −0.31292 (16) 0.29292 (15) 0.0471 (5)
C15 −0.0407 (2) −0.34975 (16) 0.40614 (14) 0.0457 (4)
H15A −0.0808 −0.4256 0.4501 0.055*
C16 −0.1334 (2) −0.39560 (17) 0.24225 (15) 0.0624 (6)
H16A −0.1458 −0.4763 0.2922 0.094*
H16B −0.0686 −0.4025 0.1679 0.094*
H16C −0.2374 −0.3607 0.2343 0.094*
C17 −0.0053 (3) −0.1566 (2) 0.10197 (16) 0.0844 (7)
H17A 0.0436 −0.0775 0.0691 0.127*
H17B −0.1170 −0.1497 0.0995 0.127*
H17C 0.0485 −0.2164 0.0588 0.127*
C18 0.1780 (2) −0.15844 (16) 0.65802 (13) 0.0421 (4)
C19 0.1568 (2) −0.24516 (17) 0.76740 (15) 0.0527 (5)
C20 0.2535 (2) −0.05020 (16) 0.64046 (13) 0.0431 (4)
H20A 0.2882 −0.0312 0.7009 0.052*
C21 0.28103 (19) 0.03485 (15) 0.53223 (13) 0.0375 (4)
C22 0.36455 (19) 0.14875 (15) 0.50764 (13) 0.0392 (4)
C23 0.3824 (2) 0.22500 (15) 0.39544 (13) 0.0396 (4)
C24 0.4691 (2) 0.33565 (16) 0.36838 (15) 0.0491 (5)
H24A 0.4811 0.3866 0.2954 0.059*
C25 0.5350 (2) 0.36845 (17) 0.44770 (15) 0.0534 (5)
H25A 0.5927 0.4409 0.4284 0.064*
C26 0.5162 (2) 0.29336 (17) 0.55808 (16) 0.0530 (5)
H26A 0.5612 0.3166 0.6120 0.064*
C27 0.4328 (2) 0.18652 (16) 0.58793 (14) 0.0462 (5)
H27A 0.4208 0.1381 0.6620 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1038 (5) 0.0659 (4) 0.0530 (3) 0.0237 (3) −0.0178 (3) −0.0166 (3)
Cl2 0.1300 (6) 0.1142 (5) 0.0412 (3) 0.0138 (5) −0.0102 (3) −0.0149 (3)
N1 0.0466 (9) 0.0348 (8) 0.0384 (8) −0.0005 (7) −0.0089 (7) 0.0011 (7)
N2 0.0416 (9) 0.0340 (8) 0.0337 (8) 0.0004 (7) −0.0077 (6) 0.0009 (6)
N3 0.0464 (9) 0.0416 (9) 0.0402 (9) −0.0028 (8) −0.0085 (7) 0.0013 (7)
N4 0.1199 (17) 0.0661 (12) 0.0471 (10) −0.0184 (12) −0.0227 (10) 0.0103 (9)
C1 0.0549 (13) 0.0468 (11) 0.0441 (11) −0.0044 (10) −0.0180 (9) −0.0066 (9)
C2 0.0628 (14) 0.0632 (13) 0.0401 (11) −0.0086 (11) −0.0163 (10) −0.0043 (10)
C3 0.0633 (15) 0.0666 (15) 0.0446 (12) −0.0157 (12) −0.0172 (11) 0.0085 (10)
C4 0.0627 (15) 0.0506 (12) 0.0649 (14) 0.0010 (11) −0.0148 (11) 0.0131 (10)
C5 0.0586 (14) 0.0491 (12) 0.0512 (12) 0.0007 (10) −0.0083 (10) 0.0114 (10)
C6 0.0466 (12) 0.0427 (11) 0.0392 (10) −0.0091 (9) −0.0111 (9) 0.0019 (8)
C7 0.0421 (11) 0.0370 (10) 0.0383 (10) 0.0007 (9) −0.0047 (8) −0.0015 (8)
C8 0.0360 (10) 0.0325 (10) 0.0373 (10) 0.0022 (8) −0.0036 (8) −0.0011 (8)
C9 0.0392 (11) 0.0362 (10) 0.0341 (10) 0.0024 (9) −0.0040 (8) 0.0012 (8)
C10 0.0399 (11) 0.0368 (10) 0.0381 (10) 0.0028 (9) −0.0071 (8) 0.0004 (8)
C11 0.0380 (11) 0.0387 (10) 0.0375 (10) 0.0033 (8) −0.0085 (8) −0.0054 (8)
C12 0.0576 (13) 0.0360 (10) 0.0430 (11) −0.0020 (9) −0.0112 (9) −0.0003 (9)
C13 0.0597 (13) 0.0474 (12) 0.0431 (11) 0.0017 (10) −0.0130 (10) −0.0062 (9)
C14 0.0433 (11) 0.0476 (11) 0.0505 (11) 0.0035 (9) −0.0107 (9) −0.0125 (9)
C15 0.0464 (12) 0.0358 (10) 0.0512 (11) −0.0033 (9) −0.0095 (9) −0.0027 (9)
C16 0.0685 (15) 0.0579 (13) 0.0648 (13) −0.0059 (11) −0.0189 (11) −0.0160 (10)
C17 0.133 (2) 0.0714 (15) 0.0532 (13) −0.0218 (15) −0.0388 (14) 0.0033 (11)
C18 0.0460 (12) 0.0394 (11) 0.0356 (10) 0.0031 (9) −0.0074 (8) −0.0010 (8)
C19 0.0657 (14) 0.0483 (12) 0.0418 (11) −0.0077 (10) −0.0122 (10) −0.0025 (10)
C20 0.0480 (12) 0.0437 (11) 0.0365 (10) 0.0034 (9) −0.0109 (8) −0.0064 (8)
C21 0.0366 (11) 0.0365 (10) 0.0357 (9) 0.0051 (8) −0.0062 (8) −0.0041 (8)
C22 0.0352 (11) 0.0384 (10) 0.0408 (10) 0.0061 (9) −0.0049 (8) −0.0083 (8)
C23 0.0396 (11) 0.0338 (10) 0.0401 (10) 0.0024 (8) −0.0035 (8) −0.0043 (8)
C24 0.0539 (13) 0.0398 (11) 0.0470 (11) −0.0029 (10) −0.0032 (9) −0.0041 (9)
C25 0.0542 (13) 0.0448 (11) 0.0598 (13) −0.0071 (10) −0.0039 (10) −0.0161 (10)
C26 0.0537 (13) 0.0525 (12) 0.0561 (12) 0.0000 (10) −0.0118 (10) −0.0195 (10)
C27 0.0501 (12) 0.0441 (11) 0.0436 (10) 0.0043 (10) −0.0108 (9) −0.0094 (9)

Geometric parameters (Å, °)

Cl1—C1 1.7214 (18) C12—H12A 0.9300
Cl2—C2 1.7201 (19) C13—C14 1.411 (2)
N1—C7 1.319 (2) C13—C17 1.519 (2)
N1—C8 1.3495 (19) C14—C15 1.379 (2)
N2—C8 1.3873 (19) C14—C16 1.505 (2)
N2—C11 1.4009 (19) C15—H15A 0.9300
N2—C9 1.4013 (19) C16—H16A 0.9600
N3—C9 1.3123 (19) C16—H16B 0.9600
N3—C10 1.3886 (19) C16—H16C 0.9600
N4—C19 1.138 (2) C17—H17A 0.9600
C1—C6 1.387 (2) C17—H17B 0.9600
C1—C2 1.403 (2) C17—H17C 0.9600
C2—C3 1.370 (3) C18—C20 1.357 (2)
C3—C4 1.373 (2) C18—C19 1.441 (2)
C3—H3A 0.9300 C20—C21 1.421 (2)
C4—C5 1.378 (2) C20—H20A 0.9300
C4—H4A 0.9300 C21—C22 1.436 (2)
C5—C6 1.393 (2) C22—C27 1.408 (2)
C5—H5A 0.9300 C22—C23 1.420 (2)
C6—C7 1.500 (2) C23—C24 1.416 (2)
C7—C23 1.426 (2) C24—C25 1.360 (2)
C8—C21 1.397 (2) C24—H24A 0.9300
C9—C18 1.425 (2) C25—C26 1.397 (2)
C10—C15 1.394 (2) C25—H25A 0.9300
C10—C11 1.401 (2) C26—C27 1.363 (2)
C11—C12 1.392 (2) C26—H26A 0.9300
C12—C13 1.382 (2) C27—H27A 0.9300
C7—N1—C8 117.45 (14) C15—C14—C16 119.31 (16)
C8—N2—C11 131.25 (13) C13—C14—C16 120.72 (16)
C8—N2—C9 123.19 (13) C14—C15—C10 119.72 (16)
C11—N2—C9 105.54 (13) C14—C15—H15A 120.1
C9—N3—C10 104.64 (13) C10—C15—H15A 120.1
C6—C1—C2 119.87 (16) C14—C16—H16A 109.5
C6—C1—Cl1 120.71 (13) C14—C16—H16B 109.5
C2—C1—Cl1 119.42 (14) H16A—C16—H16B 109.5
C3—C2—C1 119.80 (17) C14—C16—H16C 109.5
C3—C2—Cl2 119.59 (15) H16A—C16—H16C 109.5
C1—C2—Cl2 120.60 (15) H16B—C16—H16C 109.5
C2—C3—C4 120.37 (17) C13—C17—H17A 109.5
C2—C3—H3A 119.8 C13—C17—H17B 109.5
C4—C3—H3A 119.8 H17A—C17—H17B 109.5
C3—C4—C5 120.64 (18) C13—C17—H17C 109.5
C3—C4—H4A 119.7 H17A—C17—H17C 109.5
C5—C4—H4A 119.7 H17B—C17—H17C 109.5
C4—C5—C6 119.98 (18) C20—C18—C9 120.27 (14)
C4—C5—H5A 120.0 C20—C18—C19 120.64 (15)
C6—C5—H5A 120.0 C9—C18—C19 119.04 (15)
C1—C6—C5 119.33 (15) N4—C19—C18 178.0 (2)
C1—C6—C7 121.37 (15) C18—C20—C21 121.74 (15)
C5—C6—C7 119.29 (15) C18—C20—H20A 119.1
N1—C7—C23 123.58 (14) C21—C20—H20A 119.1
N1—C7—C6 116.15 (14) C8—C21—C20 119.06 (15)
C23—C7—C6 120.27 (15) C8—C21—C22 116.76 (14)
N1—C8—N2 115.72 (14) C20—C21—C22 124.16 (14)
N1—C8—C21 125.72 (15) C27—C22—C23 118.74 (16)
N2—C8—C21 118.56 (13) C27—C22—C21 123.32 (15)
N3—C9—N2 113.47 (14) C23—C22—C21 117.92 (14)
N3—C9—C18 129.35 (14) C24—C23—C22 118.74 (15)
N2—C9—C18 117.18 (15) C24—C23—C7 122.71 (15)
N3—C10—C15 129.18 (15) C22—C23—C7 118.51 (16)
N3—C10—C11 111.38 (15) C25—C24—C23 120.91 (16)
C15—C10—C11 119.44 (15) C25—C24—H24A 119.5
C12—C11—C10 121.67 (16) C23—C24—H24A 119.5
C12—C11—N2 133.34 (16) C24—C25—C26 120.03 (17)
C10—C11—N2 104.97 (13) C24—C25—H25A 120.0
C13—C12—C11 117.98 (16) C26—C25—H25A 120.0
C13—C12—H12A 121.0 C27—C26—C25 120.95 (17)
C11—C12—H12A 121.0 C27—C26—H26A 119.5
C12—C13—C14 121.22 (15) C25—C26—H26A 119.5
C12—C13—C17 118.67 (17) C26—C27—C22 120.63 (16)
C14—C13—C17 120.11 (17) C26—C27—H27A 119.7
C15—C14—C13 119.97 (17) C22—C27—H27A 119.7
C6—C1—C2—C3 −0.6 (3) N2—C11—C12—C13 −178.08 (17)
Cl1—C1—C2—C3 180.00 (14) C11—C12—C13—C14 −0.2 (3)
C6—C1—C2—Cl2 178.11 (14) C11—C12—C13—C17 179.24 (17)
Cl1—C1—C2—Cl2 −1.3 (2) C12—C13—C14—C15 0.0 (3)
C1—C2—C3—C4 0.1 (3) C17—C13—C14—C15 −179.43 (18)
Cl2—C2—C3—C4 −178.65 (15) C12—C13—C14—C16 179.13 (16)
C2—C3—C4—C5 1.0 (3) C17—C13—C14—C16 −0.3 (3)
C3—C4—C5—C6 −1.5 (3) C13—C14—C15—C10 0.2 (3)
C2—C1—C6—C5 0.1 (3) C16—C14—C15—C10 −178.96 (15)
Cl1—C1—C6—C5 179.47 (14) N3—C10—C15—C14 178.80 (16)
C2—C1—C6—C7 −179.36 (16) C11—C10—C15—C14 −0.2 (2)
Cl1—C1—C6—C7 0.0 (2) N3—C9—C18—C20 178.47 (16)
C4—C5—C6—C1 1.0 (3) N2—C9—C18—C20 −1.0 (2)
C4—C5—C6—C7 −179.58 (17) N3—C9—C18—C19 1.2 (3)
C8—N1—C7—C23 1.9 (2) N2—C9—C18—C19 −178.29 (15)
C8—N1—C7—C6 −178.42 (14) C9—C18—C20—C21 0.5 (2)
C1—C6—C7—N1 −67.7 (2) C19—C18—C20—C21 177.75 (15)
C5—C6—C7—N1 112.84 (18) N1—C8—C21—C20 179.41 (15)
C1—C6—C7—C23 111.97 (19) N2—C8—C21—C20 −0.9 (2)
C5—C6—C7—C23 −67.5 (2) N1—C8—C21—C22 −2.0 (2)
C7—N1—C8—N2 −179.53 (14) N2—C8—C21—C22 177.66 (13)
C7—N1—C8—C21 0.2 (2) C18—C20—C21—C8 0.4 (2)
C11—N2—C8—N1 2.2 (2) C18—C20—C21—C22 −177.98 (15)
C9—N2—C8—N1 −179.90 (14) C8—C21—C22—C27 −176.46 (15)
C11—N2—C8—C21 −177.54 (15) C20—C21—C22—C27 2.0 (2)
C9—N2—C8—C21 0.4 (2) C8—C21—C22—C23 1.8 (2)
C10—N3—C9—N2 0.31 (18) C20—C21—C22—C23 −179.73 (15)
C10—N3—C9—C18 −179.18 (16) C27—C22—C23—C24 0.4 (2)
C8—N2—C9—N3 −178.98 (14) C21—C22—C23—C24 −177.92 (14)
C11—N2—C9—N3 −0.62 (18) C27—C22—C23—C7 178.34 (15)
C8—N2—C9—C18 0.6 (2) C21—C22—C23—C7 0.0 (2)
C11—N2—C9—C18 178.94 (14) N1—C7—C23—C24 175.85 (15)
C9—N3—C10—C15 −178.96 (17) C6—C7—C23—C24 −3.8 (2)
C9—N3—C10—C11 0.12 (18) N1—C7—C23—C22 −2.0 (2)
N3—C10—C11—C12 −179.17 (15) C6—C7—C23—C22 178.35 (15)
C15—C10—C11—C12 0.0 (2) C22—C23—C24—C25 0.4 (2)
N3—C10—C11—N2 −0.49 (17) C7—C23—C24—C25 −177.44 (16)
C15—C10—C11—N2 178.69 (14) C23—C24—C25—C26 −0.7 (3)
C8—N2—C11—C12 −2.7 (3) C24—C25—C26—C27 0.3 (3)
C9—N2—C11—C12 179.09 (18) C25—C26—C27—C22 0.5 (3)
C8—N2—C11—C10 178.81 (15) C23—C22—C27—C26 −0.9 (2)
C9—N2—C11—C10 0.63 (16) C21—C22—C27—C26 177.38 (15)
C10—C11—C12—C13 0.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2589).

References

  1. Bijan, P. D. & Basu, U. P. (1965). Indian J. Chem.3, 268–272.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gokhale, U. V. & Seshadri, S. (1987). Dyes Pigm.8, 157–163.
  4. Kametami, T. & Fukomoto, K. (1981). The Chemistry of Heterocyclic Compounds: Isoquinolines, Part 1, edited by G. Grethe, p. 139. New York: John Wiley.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  6. Neumeyer, J. L. & Weinhard, K. K. (1970). J. Med. Chem.13, 613-618. [DOI] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis Pro and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  8. Rajagopal, R. & Seshadri, S. (1991). Dyes Pigm.17, 57–69.
  9. Shamma, M. (1972). The Isoquinoline Alkaloids New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Volovnenko, T. A., Tarasov, A. V. & Volovenko, Yu. M. (2006). Ukr. Khim. Zh. (Russ. Ed.), 72, 108–111.
  12. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809008447/sj2589sup1.cif

e-65-0o792-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008447/sj2589Isup2.hkl

e-65-0o792-Isup2.hkl (210.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES