Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 14;65(Pt 4):o745–o746. doi: 10.1107/S1600536809008071

2-(1H-Benzoimidazol-2-yl)-6-ethoxy­phenol

Chin Sing Yeap a, Hadi Kargar b,, Reza Kia a, Arezoo Jamshidvand b, Hoong-Kun Fun a,*
PMCID: PMC2969036  PMID: 21582478

Abstract

The title Schiff base compound, C15H14N2O2, consists of two crystallographically independent mol­ecules, A and B. Mol­ecule A is almost planar, whereas mol­ecule B is slightly twisted, the dihedral angles between the benzimidazole group and the benzene rings being 2.65 (12) and 13.17 (15)°, respectively. The methyl group of mol­ecule B is disordered over two positions, with a refined site-occupancy ratio of 0.581 (7):0.419 (7). In each mol­ecule, intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. In the crystal structure, both types of mol­ecules are linked via inter­molecular bifurcated N—H⋯O hydrogen bonds into one-dimensional extended chains along [010] and form R 1 2(5) ring motifs. The crystal structure is further stabilized by inter­molecular C—H⋯π and π–π inter­actions [centroid–centroid distances = 3.4758 (16)–3.596 (2) Å].

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For benzimidazole chemistry, reaction mechanisms and bioactivity, see, for example: Latif et al. (1983); Craigo et al. (1999); Gudmundsson et al. (2000); Trivedi et al.(2006); Kim et al. (1996); Ramla et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-0o745-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O2

  • M r = 254.28

  • Monoclinic, Inline graphic

  • a = 22.5305 (4) Å

  • b = 12.0113 (2) Å

  • c = 21.4241 (3) Å

  • β = 120.449 (1)°

  • V = 4998.17 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.38 × 0.23 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.966, T max = 0.984

  • 49947 measured reflections

  • 5171 independent reflections

  • 4238 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.151

  • S = 1.19

  • 5171 reflections

  • 372 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008071/lh2781sup1.cif

e-65-0o745-sup1.cif (28KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008071/lh2781Isup2.hkl

e-65-0o745-Isup2.hkl (253.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.91 (4) 1.67 (4) 2.557 (4) 164 (4)
N2A—H1NA⋯O1B 0.81 (4) 2.14 (4) 2.865 (3) 149 (3)
N2A—H1NA⋯O2B 0.81 (4) 2.57 (4) 3.199 (3) 136 (3)
O1B—H1OB⋯N1B 0.97 (4) 1.67 (4) 2.567 (3) 151 (3)
N2B—H1NB⋯O1Ai 0.94 (4) 1.95 (4) 2.877 (3) 167 (4)
N2B—H1NB⋯O2Ai 0.94 (4) 2.55 (4) 3.136 (3) 121 (3)
C4A—H4AACg1ii 0.93 2.80 3.590 (4) 143
C14B—H14CCg2iii 0.97 2.84 3.721 (5) 152
C15B—H15DCg3iv 0.96 2.76 3.715 (8) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1, Cg2 and Cg3 are the centroids of the C8B–C13B, C1B–C6B and N1A–C1A–C6A–N2A–C7A rings, respectively.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. YCS thanks Universiti Sains Malaysia for a studentship award. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Benzimidazoles are used widely in biological applications and as pharmaceutical agents (Craigo et al., 1999; Gudmundsson et al., 2000; Trivedi et al., 2006). They are also used as topoisomerase I inhibitors (Kim et al., 1996) and for antitumor activity (Ramla et al., 2006). Due to these important applications, many synthetic routes towards benzimidazoles have been developed. They can, for example, be synthesized by the reaction of phenolic aldehydes with o-phenylenediamine (Latif et al.,, 1983). Based on this route the title compound was synthesized and its crystal structure is reported here.

The asymmetric unit of the title compound, Fig. 1, consists of two crystallographically independent molecules, A and B with a slightly different conformations due to a disordered group. Intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The two molecules A and B are linked together by a bifurcated hydrogen bond involving the two oxygen atoms of the hydroxy and ethoxy groups with a R12(5) ring motif. The molecule A is almost planar wheares the molecule B is slightly twisted with the dihedral angles between the benzimidazole and the phenyl rings being 2.65 (12) and 13.17 (15) °, respectively. The methyl group of molecule B is disordered over two positions with a refined site-occupancy ratio of 0.581 (7):0.419 (7). The crystal structure is further stabilized by intermolecular C—H···π [Cg1, Cg2 and Cg3 are the centroids of the C8B–C13B, C1B–C6B and N1A/C1A/C6A/N2A/C7A rings] (Table 1) and π-π interactions [Cg1···Cg4iii = 3.596 (2) and Cg3···Cg5iii = 3.4758 (16) Å; (iii) -x, y, 1/2 - z ; Cg4 and Cg5 are the centroids of the N1B/C1B/C6B/N2B/C7B and C8A–C13A rings]. In the crystal structure, molecules are linked together into 1-D extended chains along the [0 1 0] direction (Fig. 2).

Experimental

An ethanolic solution (50 ml) of 3-ethoxy-salicylaldehyde (2 mmol, 332 mg) was added to 1,2-phenylenediamine (1 mmol, 217 mg). The mixture was refluxed for 2 h, and cooled to room temperature. The resulting colourless powder was filtered, washed with cooled ethanol and dried in vacuo. Single crystals suitable for X-ray diffraction were obtained from an methanol solution at room temperature.

Refinement

O1A, O1B and N-bound hydrogen atoms were located from the diffrence Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 (C & O). A rotating group model was used for methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intra- and intermolecular hydrogen bonds are shown as dashed lines. The open bond indicates the minor component of disorder.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. The disorder is not shown and only H atoms involved in hydrogen bonds are drawn.

Crystal data

C15H14N2O2 F(000) = 2144
Mr = 254.28 Dx = 1.352 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9961 reflections
a = 22.5305 (4) Å θ = 2.5–32.2°
b = 12.0113 (2) Å µ = 0.09 mm1
c = 21.4241 (3) Å T = 100 K
β = 120.449 (1)° Block, yellow
V = 4998.17 (14) Å3 0.38 × 0.23 × 0.18 mm
Z = 16

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5171 independent reflections
Radiation source: fine-focus sealed tube 4238 reflections with I > 2σ(I)
graphite Rint = 0.043
φ and ω scans θmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −28→28
Tmin = 0.966, Tmax = 0.984 k = −14→15
49947 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.022P)2 + 16.3221P] where P = (Fo2 + 2Fc2)/3
5171 reflections (Δ/σ)max < 0.001
372 parameters Δρmax = 0.57 e Å3
1 restraint Δρmin = −0.48 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.04313 (11) −0.05359 (15) 0.34802 (11) 0.0343 (5)
O2A −0.04669 (10) −0.05371 (16) 0.38878 (11) 0.0352 (5)
N1A 0.12309 (11) 0.04703 (18) 0.31444 (12) 0.0278 (5)
N2A 0.12918 (13) 0.2321 (2) 0.31223 (14) 0.0328 (5)
C1A 0.16902 (14) 0.0757 (2) 0.29195 (14) 0.0280 (6)
C2A 0.20683 (15) 0.0094 (2) 0.27078 (16) 0.0345 (6)
H2AA 0.2047 −0.0678 0.2714 0.041*
C3A 0.24743 (16) 0.0632 (3) 0.24891 (17) 0.0389 (7)
H3AA 0.2731 0.0209 0.2346 0.047*
C4A 0.25106 (16) 0.1776 (3) 0.24763 (18) 0.0413 (7)
H4AA 0.2792 0.2104 0.2326 0.050*
C5A 0.21403 (16) 0.2450 (3) 0.26805 (17) 0.0408 (7)
H5AA 0.2165 0.3222 0.2670 0.049*
C6A 0.17291 (14) 0.1923 (2) 0.29023 (15) 0.0318 (6)
C7A 0.09976 (13) 0.1427 (2) 0.32507 (13) 0.0267 (5)
C8A 0.04901 (13) 0.1485 (2) 0.34835 (14) 0.0257 (5)
C9A 0.02514 (14) 0.2496 (2) 0.36000 (15) 0.0319 (6)
H9AA 0.0424 0.3165 0.3540 0.038*
C10A −0.02370 (15) 0.2501 (2) 0.38028 (16) 0.0362 (7)
H10A −0.0398 0.3175 0.3873 0.043*
C11A −0.04945 (14) 0.1499 (2) 0.39045 (15) 0.0328 (6)
H11A −0.0824 0.1511 0.4043 0.039*
C12A −0.02616 (14) 0.0499 (2) 0.38002 (14) 0.0290 (6)
C13A 0.02312 (13) 0.0480 (2) 0.35843 (13) 0.0255 (5)
C14A −0.09118 (15) −0.0595 (3) 0.41821 (17) 0.0405 (7)
H14A −0.1346 −0.0230 0.3863 0.049*
H14B −0.0700 −0.0237 0.4652 0.049*
C15A −0.10244 (18) −0.1825 (3) 0.4250 (2) 0.0546 (9)
H15A −0.1308 −0.1911 0.4463 0.082*
H15B −0.0588 −0.2181 0.4553 0.082*
H15C −0.1248 −0.2163 0.3779 0.082*
O1B 0.08605 (12) 0.45323 (16) 0.25795 (12) 0.0409 (5)
O2B 0.17852 (13) 0.46703 (18) 0.39287 (12) 0.0530 (6)
N1B 0.00726 (12) 0.54159 (19) 0.13347 (13) 0.0332 (5)
N2B −0.01822 (12) 0.72236 (19) 0.12353 (13) 0.0303 (5)
C1B −0.04540 (15) 0.5626 (2) 0.06352 (16) 0.0335 (6)
C2B −0.08028 (17) 0.4918 (3) 0.00407 (17) 0.0438 (8)
H2BA −0.0692 0.4166 0.0075 0.053*
C3B −0.13164 (17) 0.5368 (3) −0.06005 (17) 0.0461 (8)
H3BA −0.1548 0.4912 −0.1005 0.055*
C4B −0.14955 (16) 0.6492 (3) −0.06553 (17) 0.0448 (8)
H4BA −0.1852 0.6762 −0.1092 0.054*
C5B −0.11554 (16) 0.7216 (3) −0.00752 (17) 0.0393 (7)
H5BA −0.1274 0.7965 −0.0112 0.047*
C6B −0.06268 (14) 0.6763 (2) 0.05654 (15) 0.0313 (6)
C7B 0.02231 (14) 0.6394 (2) 0.16742 (15) 0.0295 (6)
C8B 0.07626 (14) 0.6529 (2) 0.24254 (15) 0.0286 (6)
C9B 0.10079 (14) 0.7581 (2) 0.27454 (16) 0.0303 (6)
H9BA 0.0819 0.8224 0.2475 0.036*
C10B 0.15256 (15) 0.7658 (2) 0.34562 (16) 0.0332 (6)
H10B 0.1688 0.8356 0.3660 0.040*
C11B 0.18127 (16) 0.6703 (2) 0.38783 (16) 0.0357 (7)
H11B 0.2165 0.6764 0.4358 0.043*
C12B 0.15684 (16) 0.5670 (2) 0.35757 (16) 0.0368 (7)
C13B 0.10542 (15) 0.5578 (2) 0.28474 (16) 0.0319 (6)
C14B 0.2276 (2) 0.4683 (3) 0.46948 (18) 0.0576 (10)
H14C 0.2090 0.5088 0.4949 0.069* 0.581 (7)
H14D 0.2698 0.5046 0.4788 0.069* 0.581 (7)
H14E 0.2218 0.4028 0.4915 0.069* 0.419 (7)
H14F 0.2208 0.5323 0.4920 0.069* 0.419 (7)
C15B 0.2415 (4) 0.3527 (6) 0.4943 (4) 0.070 (2) 0.581 (7)
H15D 0.2734 0.3510 0.5456 0.104* 0.581 (7)
H15E 0.2609 0.3139 0.4697 0.104* 0.581 (7)
H15F 0.1993 0.3172 0.4841 0.104* 0.581 (7)
C15C 0.2967 (3) 0.4728 (8) 0.4792 (5) 0.063 (3) 0.419 (7)
H15G 0.3303 0.4739 0.5300 0.095* 0.419 (7)
H15H 0.3012 0.5390 0.4568 0.095* 0.419 (7)
H15I 0.3039 0.4085 0.4573 0.095* 0.419 (7)
H1OA 0.0731 (18) −0.030 (3) 0.3339 (18) 0.052 (10)*
H1NA 0.1191 (17) 0.297 (3) 0.3128 (18) 0.048 (10)*
H1OB 0.0555 (19) 0.462 (3) 0.206 (2) 0.061 (11)*
H1NB −0.0186 (17) 0.797 (3) 0.1365 (18) 0.052 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0431 (12) 0.0193 (9) 0.0518 (13) −0.0025 (8) 0.0323 (11) −0.0009 (8)
O2A 0.0383 (11) 0.0298 (10) 0.0448 (12) −0.0082 (9) 0.0264 (10) −0.0019 (9)
N1A 0.0325 (12) 0.0206 (11) 0.0335 (12) −0.0002 (9) 0.0191 (10) −0.0002 (9)
N2A 0.0359 (13) 0.0209 (12) 0.0431 (14) 0.0007 (10) 0.0210 (12) 0.0060 (10)
C1A 0.0303 (14) 0.0240 (13) 0.0278 (13) −0.0017 (11) 0.0133 (11) 0.0029 (10)
C2A 0.0376 (16) 0.0281 (14) 0.0389 (16) 0.0001 (12) 0.0202 (13) 0.0017 (12)
C3A 0.0388 (16) 0.0428 (17) 0.0399 (16) 0.0019 (14) 0.0236 (14) 0.0032 (13)
C4A 0.0374 (16) 0.0426 (18) 0.0490 (18) −0.0001 (14) 0.0256 (14) 0.0123 (14)
C5A 0.0425 (17) 0.0315 (16) 0.0520 (19) −0.0031 (13) 0.0265 (15) 0.0102 (14)
C6A 0.0302 (14) 0.0306 (15) 0.0331 (15) 0.0008 (11) 0.0149 (12) 0.0082 (12)
C7A 0.0263 (13) 0.0243 (13) 0.0247 (13) −0.0020 (10) 0.0092 (11) 0.0019 (10)
C8A 0.0277 (13) 0.0202 (12) 0.0259 (13) −0.0006 (10) 0.0111 (11) 0.0019 (10)
C9A 0.0359 (15) 0.0231 (13) 0.0357 (15) 0.0007 (11) 0.0174 (13) 0.0030 (11)
C10A 0.0429 (17) 0.0242 (14) 0.0427 (17) 0.0071 (12) 0.0226 (14) −0.0007 (12)
C11A 0.0321 (14) 0.0343 (15) 0.0339 (15) 0.0000 (12) 0.0182 (13) −0.0027 (12)
C12A 0.0287 (14) 0.0277 (14) 0.0273 (14) −0.0035 (11) 0.0117 (11) 0.0006 (11)
C13A 0.0288 (13) 0.0202 (12) 0.0246 (13) −0.0017 (10) 0.0115 (11) 0.0000 (10)
C14A 0.0353 (16) 0.0524 (19) 0.0362 (16) −0.0049 (14) 0.0199 (14) 0.0054 (14)
C15A 0.049 (2) 0.059 (2) 0.059 (2) −0.0151 (17) 0.0297 (18) 0.0116 (18)
O1B 0.0528 (13) 0.0209 (10) 0.0370 (12) 0.0008 (9) 0.0139 (10) −0.0005 (8)
O2B 0.0737 (17) 0.0314 (12) 0.0355 (12) 0.0072 (11) 0.0143 (12) 0.0051 (9)
N1B 0.0361 (13) 0.0250 (12) 0.0356 (13) 0.0000 (10) 0.0159 (11) −0.0009 (10)
N2B 0.0370 (13) 0.0203 (11) 0.0390 (13) 0.0024 (10) 0.0233 (11) 0.0035 (10)
C1B 0.0365 (15) 0.0277 (14) 0.0379 (16) 0.0032 (12) 0.0200 (13) 0.0030 (12)
C2B 0.0485 (19) 0.0346 (17) 0.0410 (17) −0.0007 (14) 0.0172 (15) −0.0021 (13)
C3B 0.0463 (18) 0.0474 (19) 0.0372 (17) −0.0037 (15) 0.0158 (15) −0.0010 (14)
C4B 0.0397 (17) 0.055 (2) 0.0370 (17) 0.0017 (15) 0.0172 (14) 0.0107 (15)
C5B 0.0436 (17) 0.0351 (16) 0.0449 (18) 0.0063 (13) 0.0265 (15) 0.0145 (13)
C6B 0.0328 (14) 0.0309 (14) 0.0370 (15) −0.0007 (12) 0.0228 (13) 0.0043 (12)
C7B 0.0326 (14) 0.0255 (14) 0.0380 (15) 0.0012 (11) 0.0234 (13) 0.0011 (11)
C8B 0.0314 (14) 0.0243 (13) 0.0384 (15) 0.0001 (11) 0.0237 (12) −0.0023 (11)
C9B 0.0370 (15) 0.0202 (13) 0.0438 (16) 0.0021 (11) 0.0278 (14) 0.0009 (11)
C10B 0.0397 (16) 0.0238 (14) 0.0452 (17) −0.0052 (12) 0.0282 (14) −0.0108 (12)
C11B 0.0402 (16) 0.0329 (15) 0.0348 (15) 0.0002 (12) 0.0196 (13) −0.0061 (12)
C12B 0.0462 (17) 0.0288 (15) 0.0373 (16) 0.0029 (13) 0.0225 (14) −0.0005 (12)
C13B 0.0383 (15) 0.0231 (13) 0.0390 (16) −0.0022 (11) 0.0230 (13) −0.0051 (11)
C14B 0.071 (3) 0.046 (2) 0.0390 (19) 0.0051 (18) 0.0161 (18) 0.0034 (16)
C15B 0.067 (5) 0.070 (5) 0.044 (4) 0.014 (4) 0.008 (3) 0.013 (3)
C15C 0.062 (6) 0.049 (5) 0.068 (6) 0.014 (4) 0.024 (5) 0.009 (4)

Geometric parameters (Å, °)

O1A—C13A 1.358 (3) N1B—C7B 1.332 (3)
O1A—H1OA 0.91 (4) N1B—C1B 1.384 (4)
O2A—C12A 1.374 (3) N2B—C7B 1.356 (3)
O2A—C14A 1.431 (3) N2B—C6B 1.383 (4)
N1A—C7A 1.330 (3) N2B—H1NB 0.94 (4)
N1A—C1A 1.388 (3) C1B—C2B 1.396 (4)
N2A—C7A 1.361 (3) C1B—C6B 1.407 (4)
N2A—C6A 1.376 (4) C2B—C3B 1.381 (4)
N2A—H1NA 0.82 (4) C2B—H2BA 0.9300
C1A—C2A 1.399 (4) C3B—C4B 1.397 (5)
C1A—C6A 1.404 (4) C3B—H3BA 0.9300
C2A—C3A 1.381 (4) C4B—C5B 1.387 (5)
C2A—H2AA 0.9300 C4B—H4BA 0.9300
C3A—C4A 1.378 (4) C5B—C6B 1.393 (4)
C3A—H3AA 0.9300 C5B—H5BA 0.9300
C4A—C5A 1.383 (4) C7B—C8B 1.453 (4)
C4A—H4AA 0.9300 C8B—C13B 1.396 (4)
C5A—C6A 1.390 (4) C8B—C9B 1.410 (4)
C5A—H5AA 0.9300 C9B—C10B 1.374 (4)
C7A—C8A 1.463 (4) C9B—H9BA 0.9300
C8A—C9A 1.400 (4) C10B—C11B 1.400 (4)
C8A—C13A 1.404 (3) C10B—H10B 0.9300
C9A—C10A 1.373 (4) C11B—C12B 1.378 (4)
C9A—H9AA 0.9300 C11B—H11B 0.9300
C10A—C11A 1.400 (4) C12B—C13B 1.399 (4)
C10A—H10A 0.9300 C14B—C15C 1.4633 (10)
C11A—C12A 1.373 (4) C14B—C15B 1.464 (7)
C11A—H11A 0.9300 C14B—H14C 0.9700
C12A—C13A 1.403 (4) C14B—H14D 0.9700
C14A—C15A 1.519 (5) C14B—H14E 0.9599
C14A—H14A 0.9700 C14B—H14F 0.9600
C14A—H14B 0.9700 C15B—H14E 0.7332
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15E 0.9600
C15A—H15C 0.9600 C15B—H15F 0.9600
O1B—C13B 1.358 (3) C15C—H15G 0.9600
O1B—H1OB 0.97 (4) C15C—H15H 0.9600
O2B—C12B 1.370 (4) C15C—H15I 0.9600
O2B—C14B 1.441 (4)
C13A—O1A—H1OA 98 (2) C3B—C2B—C1B 118.0 (3)
C12A—O2A—C14A 117.6 (2) C3B—C2B—H2BA 121.0
C7A—N1A—C1A 105.9 (2) C1B—C2B—H2BA 121.0
C7A—N2A—C6A 107.6 (2) C2B—C3B—C4B 121.5 (3)
C7A—N2A—H1NA 126 (2) C2B—C3B—H3BA 119.3
C6A—N2A—H1NA 126 (2) C4B—C3B—H3BA 119.3
N1A—C1A—C2A 130.9 (2) C5B—C4B—C3B 121.7 (3)
N1A—C1A—C6A 108.9 (2) C5B—C4B—H4BA 119.1
C2A—C1A—C6A 120.2 (3) C3B—C4B—H4BA 119.1
C3A—C2A—C1A 117.5 (3) C4B—C5B—C6B 116.5 (3)
C3A—C2A—H2AA 121.3 C4B—C5B—H5BA 121.8
C1A—C2A—H2AA 121.3 C6B—C5B—H5BA 121.8
C4A—C3A—C2A 121.9 (3) N2B—C6B—C5B 132.4 (3)
C4A—C3A—H3AA 119.0 N2B—C6B—C1B 105.2 (2)
C2A—C3A—H3AA 119.0 C5B—C6B—C1B 122.4 (3)
C3A—C4A—C5A 121.7 (3) N1B—C7B—N2B 111.9 (2)
C3A—C4A—H4AA 119.1 N1B—C7B—C8B 122.8 (2)
C5A—C4A—H4AA 119.1 N2B—C7B—C8B 125.3 (2)
C4A—C5A—C6A 117.1 (3) C13B—C8B—C9B 118.6 (3)
C4A—C5A—H5AA 121.5 C13B—C8B—C7B 118.8 (2)
C6A—C5A—H5AA 121.5 C9B—C8B—C7B 122.7 (2)
N2A—C6A—C5A 132.5 (3) C10B—C9B—C8B 120.2 (3)
N2A—C6A—C1A 105.8 (2) C10B—C9B—H9BA 119.9
C5A—C6A—C1A 121.6 (3) C8B—C9B—H9BA 119.9
N1A—C7A—N2A 111.8 (2) C9B—C10B—C11B 121.0 (3)
N1A—C7A—C8A 123.0 (2) C9B—C10B—H10B 119.5
N2A—C7A—C8A 125.2 (2) C11B—C10B—H10B 119.5
C9A—C8A—C13A 119.4 (2) C12B—C11B—C10B 119.3 (3)
C9A—C8A—C7A 122.6 (2) C12B—C11B—H11B 120.3
C13A—C8A—C7A 118.0 (2) C10B—C11B—H11B 120.3
C10A—C9A—C8A 120.2 (3) O2B—C12B—C11B 125.7 (3)
C10A—C9A—H9AA 119.9 O2B—C12B—C13B 114.1 (3)
C8A—C9A—H9AA 119.9 C11B—C12B—C13B 120.2 (3)
C9A—C10A—C11A 120.5 (3) O1B—C13B—C8B 122.5 (3)
C9A—C10A—H10A 119.8 O1B—C13B—C12B 116.8 (3)
C11A—C10A—H10A 119.8 C8B—C13B—C12B 120.6 (3)
C12A—C11A—C10A 120.2 (3) O2B—C14B—C15C 108.0 (5)
C12A—C11A—H11A 119.9 O2B—C14B—C15B 107.6 (4)
C10A—C11A—H11A 119.9 C15C—C14B—C15B 88.1 (5)
C11A—C12A—O2A 126.0 (2) O2B—C14B—H14C 110.2
C11A—C12A—C13A 120.0 (2) C15C—C14B—H14C 129.3
O2A—C12A—C13A 114.1 (2) C15B—C14B—H14C 110.2
O1A—C13A—C12A 117.0 (2) O2B—C14B—H14D 110.2
O1A—C13A—C8A 123.3 (2) C15B—C14B—H14D 110.2
C12A—C13A—C8A 119.8 (2) H14C—C14B—H14D 108.5
O2A—C14A—C15A 106.2 (3) O2B—C14B—H14E 109.5
O2A—C14A—H14A 110.5 C15C—C14B—H14E 111.1
C15A—C14A—H14A 110.5 H14C—C14B—H14E 85.9
O2A—C14A—H14B 110.5 H14D—C14B—H14E 129.1
C15A—C14A—H14B 110.5 O2B—C14B—H14F 110.8
H14A—C14A—H14B 108.7 C15C—C14B—H14F 109.1
C14A—C15A—H15A 109.5 C15B—C14B—H14F 129.5
C14A—C15A—H15B 109.5 H14D—C14B—H14F 85.8
H15A—C15A—H15B 109.5 H14E—C14B—H14F 108.3
C14A—C15A—H15C 109.5 C14B—C15B—H15D 109.5
H15A—C15A—H15C 109.5 H14E—C15B—H15D 100.5
H15B—C15A—H15C 109.5 C14B—C15B—H15E 109.5
C13B—O1B—H1OB 106 (2) H14E—C15B—H15E 141.2
C12B—O2B—C14B 118.2 (3) C14B—C15B—H15F 109.5
C7B—N1B—C1B 105.8 (2) H14E—C15B—H15F 81.8
C7B—N2B—C6B 107.8 (2) C14B—C15C—H15G 109.5
C7B—N2B—H1NB 127 (2) C14B—C15C—H15H 109.5
C6B—N2B—H1NB 125 (2) H15G—C15C—H15H 109.5
N1B—C1B—C2B 130.9 (3) C14B—C15C—H15I 109.5
N1B—C1B—C6B 109.4 (3) H15G—C15C—H15I 109.5
C2B—C1B—C6B 119.8 (3) H15H—C15C—H15I 109.5
C7A—N1A—C1A—C2A −177.4 (3) C7B—N1B—C1B—C6B −1.1 (3)
C7A—N1A—C1A—C6A 0.6 (3) N1B—C1B—C2B—C3B 179.8 (3)
N1A—C1A—C2A—C3A 178.1 (3) C6B—C1B—C2B—C3B −0.6 (5)
C6A—C1A—C2A—C3A 0.3 (4) C1B—C2B—C3B—C4B −1.2 (5)
C1A—C2A—C3A—C4A −0.1 (5) C2B—C3B—C4B—C5B 1.7 (5)
C2A—C3A—C4A—C5A −0.2 (5) C3B—C4B—C5B—C6B −0.1 (5)
C3A—C4A—C5A—C6A 0.2 (5) C7B—N2B—C6B—C5B 178.4 (3)
C7A—N2A—C6A—C5A 177.6 (3) C7B—N2B—C6B—C1B −0.6 (3)
C7A—N2A—C6A—C1A −1.1 (3) C4B—C5B—C6B—N2B 179.3 (3)
C4A—C5A—C6A—N2A −178.5 (3) C4B—C5B—C6B—C1B −1.8 (4)
C4A—C5A—C6A—C1A 0.0 (4) N1B—C1B—C6B—N2B 1.1 (3)
N1A—C1A—C6A—N2A 0.3 (3) C2B—C1B—C6B—N2B −178.6 (3)
C2A—C1A—C6A—N2A 178.6 (2) N1B—C1B—C6B—C5B −178.1 (2)
N1A—C1A—C6A—C5A −178.6 (3) C2B—C1B—C6B—C5B 2.2 (4)
C2A—C1A—C6A—C5A −0.3 (4) C1B—N1B—C7B—N2B 0.7 (3)
C1A—N1A—C7A—N2A −1.3 (3) C1B—N1B—C7B—C8B −179.1 (2)
C1A—N1A—C7A—C8A 179.1 (2) C6B—N2B—C7B—N1B 0.0 (3)
C6A—N2A—C7A—N1A 1.5 (3) C6B—N2B—C7B—C8B 179.7 (2)
C6A—N2A—C7A—C8A −178.9 (2) N1B—C7B—C8B—C13B −11.6 (4)
N1A—C7A—C8A—C9A 179.5 (3) N2B—C7B—C8B—C13B 168.7 (3)
N2A—C7A—C8A—C9A 0.0 (4) N1B—C7B—C8B—C9B 168.0 (3)
N1A—C7A—C8A—C13A −1.2 (4) N2B—C7B—C8B—C9B −11.8 (4)
N2A—C7A—C8A—C13A 179.3 (2) C13B—C8B—C9B—C10B 0.4 (4)
C13A—C8A—C9A—C10A −0.7 (4) C7B—C8B—C9B—C10B −179.2 (2)
C7A—C8A—C9A—C10A 178.5 (3) C8B—C9B—C10B—C11B −0.9 (4)
C8A—C9A—C10A—C11A 0.9 (4) C9B—C10B—C11B—C12B −0.4 (4)
C9A—C10A—C11A—C12A −0.2 (4) C14B—O2B—C12B—C11B 4.6 (5)
C10A—C11A—C12A—O2A 179.4 (3) C14B—O2B—C12B—C13B −175.3 (3)
C10A—C11A—C12A—C13A −0.6 (4) C10B—C11B—C12B—O2B −177.9 (3)
C14A—O2A—C12A—C11A −6.6 (4) C10B—C11B—C12B—C13B 2.1 (4)
C14A—O2A—C12A—C13A 173.4 (2) C9B—C8B—C13B—O1B −178.5 (3)
C11A—C12A—C13A—O1A −179.0 (2) C7B—C8B—C13B—O1B 1.1 (4)
O2A—C12A—C13A—O1A 1.0 (3) C9B—C8B—C13B—C12B 1.3 (4)
C11A—C12A—C13A—C8A 0.7 (4) C7B—C8B—C13B—C12B −179.1 (3)
O2A—C12A—C13A—C8A −179.3 (2) O2B—C12B—C13B—O1B −2.8 (4)
C9A—C8A—C13A—O1A 179.7 (2) C11B—C12B—C13B—O1B 177.3 (3)
C7A—C8A—C13A—O1A 0.4 (4) O2B—C12B—C13B—C8B 177.4 (3)
C9A—C8A—C13A—C12A 0.0 (4) C11B—C12B—C13B—C8B −2.5 (4)
C7A—C8A—C13A—C12A −179.4 (2) C12B—O2B—C14B—C15C −87.0 (5)
C12A—O2A—C14A—C15A −177.4 (2) C12B—O2B—C14B—C15B 179.2 (4)
C7B—N1B—C1B—C2B 178.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1OA···N1A 0.91 (4) 1.67 (4) 2.557 (4) 164 (4)
N2A—H1NA···O1B 0.81 (4) 2.14 (4) 2.865 (3) 149 (3)
N2A—H1NA···O2B 0.81 (4) 2.57 (4) 3.199 (3) 136 (3)
O1B—H1OB···N1B 0.97 (4) 1.67 (4) 2.567 (3) 151 (3)
N2B—H1NB···O1Ai 0.94 (4) 1.95 (4) 2.877 (3) 167 (4)
N2B—H1NB···O2Ai 0.94 (4) 2.55 (4) 3.136 (3) 121 (3)
C4A—H4AA···Cg1ii 0.93 2.80 3.590 (4) 143
C14B—H14C···Cg2iii 0.97 2.84 3.721 (5) 152
C15B—H15D···Cg3iv 0.96 2.76 3.715 (8) 176

Symmetry codes: (i) −x, y+1, −z+1/2; (ii) x, −y−1, z−1/2; (iii) −x, y, −z+1/2; (iv) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2781).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Craigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem.42, 3324–3333. [DOI] [PubMed]
  5. Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem.43, 2464–2472. [DOI] [PubMed]
  6. Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem.39, 992–998. [DOI] [PubMed]
  7. Latif, N., Mishriky, N. & Assad, F. M. (1983). Recl Trav. Chim. Pays-Bas, 102, 73–77.
  8. Ramla, M. M., Omer, M. A., El-Khamry, A. M. & El-Diwani, H. I. (2006). Bioorg. Med. Chem.14, 7324–7332. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Trivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A Chem.245, 8–11.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809008071/lh2781sup1.cif

e-65-0o745-sup1.cif (28KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809008071/lh2781Isup2.hkl

e-65-0o745-Isup2.hkl (253.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES