Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o851. doi: 10.1107/S1600536809010198

N′-(3-Bromo-5-chloro-2-hydroxy­benzyl­idene)-2-methoxy­benzohydrazide

Jin-Long Hou a,*
PMCID: PMC2969039  PMID: 21582569

Abstract

The title compound, C15H12BrClN2O3, was obtained by the condensation reaction between 3-bromo-5-chloro-2-hydroxy­benzaldehyde and 2-methoxy­benzohydrazide. The mol­ecule is essentially planar, with a dihedral angle between the two benzene rings of 4.7 (2)°, and displays an E configuration about the C=N double bond. The mol­ecular conformation is stabilized by intramolecular O—H⋯N and N—H⋯O hydrogen bonds. In the crystal structure, mol­ecules are linked into zigzag chains running parallel to the c axis by inter­molecular C—H⋯O hydrogen bonds. The chains are further connected through aromatic π–π stacking inter­actions with centroid–centroid distances of 3.583 (4) Å.

Related literature

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006); Karthikeyan et al. (2006); Kucukguzel et al. (2006). For the crystal structures of related hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Zhang et al. (2009); Khaledi et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o851-scheme1.jpg

Experimental

Crystal data

  • C15H12BrClN2O3

  • M r = 383.63

  • Monoclinic, Inline graphic

  • a = 10.883 (1) Å

  • b = 12.863 (2) Å

  • c = 10.950 (1) Å

  • β = 96.027 (3)°

  • V = 1524.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 298 K

  • 0.12 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.709, T max = 0.746

  • 4397 measured reflections

  • 2323 independent reflections

  • 1906 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.062

  • S = 1.02

  • 2323 reflections

  • 205 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 671 Friedel pairs

  • Flack parameter: 0.068 (12)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010198/rz2301sup1.cif

e-65-0o851-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010198/rz2301Isup2.hkl

e-65-0o851-Isup2.hkl (114.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.549 (4) 146
N2—H2⋯O3 0.895 (10) 1.92 (3) 2.623 (4) 134 (4)
C6—H6⋯O2i 0.93 2.45 3.315 (6) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

Financially support from Qiqihar University is gratefully acknowledged.

supplementary crystallographic information

Comment

Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Cukurovali et al., 2006; Karthikeyan et al., 2006; Kucukguzel et al., 2006). In the last two years, several hydrazone compounds have been structurally characterized (Mohd Lair et al., 2009; Fun et al., 2008; Zhang et al., 2009; Khaledi et al., 2008). In this paper, the synthesis and crystal structure of the title compound, derived from the condensation reaction of 3-bromo-5-chloro-2-hydroxybenzaldehyde and 2-methoxybenzohydrazide, is reported.

The molecular structure of the title compound is shown in Fig. 1. The molecule is essentially planar (mean deviation 0.010 (4) Å) and displays an E configuration about the C═N double bond. All bond lengths are within normal ranges (Allen et al., 1987). The molecular conformation is stabilized by intramolecular O—H···N and N—H···O hydrogen bonds (Table 1). In the crystal structure, the molecules are linked into zig-zag chains running parallel to the c axis by intermolecular C—H···O hydrogen bonds. The chains are further connected by aromatic π-π stacking interactions: Cp1···Cp2i = 3.583 (4) Å, perpendicular interplanar distance = 3.430 (4) Å, Cp1···Cp2i offset = 1.037 (3) Å [Cp1 and Cp2 are the centroids of the C9–C14 and C1–C6 armatic rings, respectively. Symmetry code: (i) -1/2+x, -1/2+y, z].

Experimental

3-Bromo-5-chloro-2-hydroxybenzaldehyde (1.0 mmol, 235.5 mg) and 2-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were mixed and refluxed with stirring for two hours. Yellow single crystals were formed after slow evaporation of the solution in air for a week.

Refinement

H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with the Uiso(H) value fixed at 0.08 Å2. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids drawn at 30% probability for non-H atoms.

Crystal data

C15H12BrClN2O3 F(000) = 768
Mr = 383.63 Dx = 1.672 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 1920 reflections
a = 10.883 (1) Å θ = 2.4–25.0°
b = 12.863 (2) Å µ = 2.89 mm1
c = 10.950 (1) Å T = 298 K
β = 96.027 (3)° Block, yellow
V = 1524.4 (3) Å3 0.12 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2323 independent reflections
Radiation source: fine-focus sealed tube 1906 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→12
Tmin = 0.709, Tmax = 0.746 k = −16→16
4397 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0041P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2323 reflections Δρmax = 0.32 e Å3
205 parameters Δρmin = −0.28 e Å3
3 restraints Absolute structure: Flack (1983), 671 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.068 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.87674 (5) 1.27290 (3) 0.55418 (4) 0.05914 (15)
Cl1 0.79439 (11) 1.45929 (8) 0.10011 (11) 0.0630 (3)
O3 0.5131 (3) 0.7894 (2) −0.0042 (3) 0.0538 (9)
O2 0.6516 (3) 0.8295 (2) 0.3590 (3) 0.0546 (9)
C8 0.6188 (3) 0.8209 (3) 0.2494 (4) 0.0396 (9)
N2 0.6245 (3) 0.9033 (2) 0.1728 (3) 0.0418 (8)
N1 0.6674 (3) 0.9949 (2) 0.2236 (3) 0.0392 (7)
O1 0.7599 (3) 1.09258 (19) 0.4140 (2) 0.0444 (6)
H1 0.7332 1.0421 0.3738 0.067*
C7 0.6737 (3) 1.0742 (3) 0.1564 (4) 0.0415 (9)
H7 0.6477 1.0713 0.0728 0.050*
C2 0.7652 (3) 1.1748 (3) 0.3396 (3) 0.0344 (8)
C6 0.7306 (4) 1.2597 (3) 0.1403 (5) 0.0390 (11)
H6 0.7025 1.2577 0.0571 0.047*
C9 0.5699 (4) 0.7207 (3) 0.1948 (4) 0.0383 (9)
C1 0.7228 (3) 1.1710 (3) 0.2134 (3) 0.0370 (9)
C5 0.7799 (3) 1.3492 (3) 0.1920 (4) 0.0447 (10)
C3 0.8145 (3) 1.2676 (3) 0.3864 (4) 0.0420 (9)
C4 0.8216 (4) 1.3547 (3) 0.3147 (4) 0.0444 (10)
H4 0.8541 1.4163 0.3487 0.053*
C10 0.5176 (3) 0.7058 (3) 0.0733 (4) 0.0433 (10)
C11 0.4706 (4) 0.6082 (3) 0.0378 (4) 0.0528 (11)
H11 0.4330 0.5987 −0.0417 0.063*
C15 0.4532 (5) 0.7794 (4) −0.1255 (4) 0.0696 (15)
H15A 0.3678 0.7624 −0.1219 0.104*
H15B 0.4922 0.7252 −0.1678 0.104*
H15C 0.4593 0.8438 −0.1687 0.104*
C14 0.5754 (4) 0.6344 (4) 0.2755 (4) 0.0486 (12)
H14 0.6094 0.6422 0.3565 0.058*
C13 0.5317 (4) 0.5407 (4) 0.2359 (5) 0.0645 (13)
H13 0.5374 0.4845 0.2896 0.077*
C12 0.4787 (4) 0.5271 (4) 0.1169 (5) 0.0661 (13)
H12 0.4485 0.4622 0.0911 0.079*
H2 0.597 (4) 0.897 (4) 0.0932 (14) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0772 (3) 0.0527 (2) 0.0443 (2) −0.0058 (3) −0.00881 (19) −0.0139 (3)
Cl1 0.0775 (8) 0.0393 (6) 0.0743 (8) 0.0053 (5) 0.0180 (6) 0.0199 (6)
O3 0.066 (2) 0.059 (2) 0.0339 (18) −0.0160 (16) −0.0040 (16) −0.0048 (16)
O2 0.080 (2) 0.049 (2) 0.0320 (18) −0.0123 (16) −0.0084 (16) −0.0009 (14)
C8 0.041 (2) 0.038 (2) 0.040 (2) 0.0012 (17) 0.0042 (18) −0.0006 (19)
N2 0.058 (2) 0.0367 (19) 0.0294 (17) −0.0104 (15) −0.0027 (15) −0.0052 (15)
N1 0.0491 (18) 0.0338 (18) 0.0338 (17) −0.0084 (14) 0.0003 (14) −0.0040 (14)
O1 0.0669 (17) 0.0337 (16) 0.0304 (14) −0.0053 (13) −0.0056 (13) −0.0023 (12)
C7 0.049 (2) 0.044 (2) 0.031 (2) 0.0010 (18) −0.0001 (17) −0.0006 (18)
C2 0.041 (2) 0.028 (2) 0.034 (2) 0.0049 (15) 0.0012 (17) −0.0020 (16)
C6 0.042 (2) 0.037 (3) 0.038 (3) 0.0041 (18) 0.0027 (19) 0.0063 (18)
C9 0.040 (2) 0.036 (2) 0.041 (2) −0.0012 (16) 0.0115 (18) −0.0041 (18)
C1 0.0378 (19) 0.037 (2) 0.036 (2) 0.0046 (17) 0.0020 (17) −0.0033 (17)
C5 0.045 (2) 0.031 (2) 0.059 (3) 0.0068 (18) 0.013 (2) 0.006 (2)
C3 0.045 (2) 0.045 (2) 0.035 (2) 0.0050 (18) −0.0012 (18) −0.0095 (19)
C4 0.050 (2) 0.029 (2) 0.055 (3) 0.0033 (16) 0.008 (2) −0.0042 (18)
C10 0.038 (2) 0.050 (3) 0.043 (2) −0.0062 (17) 0.0095 (18) −0.0154 (19)
C11 0.053 (3) 0.052 (3) 0.055 (3) −0.015 (2) 0.012 (2) −0.018 (2)
C15 0.073 (3) 0.089 (4) 0.044 (3) −0.023 (3) −0.005 (2) −0.011 (3)
C14 0.045 (2) 0.052 (3) 0.049 (3) −0.006 (2) 0.008 (2) −0.010 (2)
C13 0.071 (3) 0.043 (3) 0.083 (4) −0.004 (2) 0.025 (3) 0.012 (3)
C12 0.067 (3) 0.044 (3) 0.090 (4) −0.014 (2) 0.020 (3) −0.018 (3)

Geometric parameters (Å, °)

Br1—C3 1.891 (4) C6—H6 0.9300
Cl1—C5 1.754 (4) C9—C10 1.404 (6)
O3—C10 1.367 (5) C9—C14 1.417 (6)
O3—C15 1.423 (5) C5—C4 1.374 (6)
O2—C8 1.221 (4) C3—C4 1.375 (6)
C8—N2 1.357 (5) C4—H4 0.9300
C8—C9 1.494 (5) C10—C11 1.396 (5)
N2—N1 1.364 (4) C11—C12 1.353 (7)
N2—H2 0.895 (10) C11—H11 0.9300
N1—C7 1.265 (4) C15—H15A 0.9600
O1—C2 1.341 (4) C15—H15B 0.9600
O1—H1 0.8200 C15—H15C 0.9600
C7—C1 1.468 (5) C14—C13 1.350 (6)
C7—H7 0.9300 C14—H14 0.9300
C2—C3 1.384 (5) C13—C12 1.379 (7)
C2—C1 1.411 (5) C13—H13 0.9300
C6—C5 1.367 (6) C12—H12 0.9300
C6—C1 1.402 (6)
C10—O3—C15 119.4 (4) C4—C3—C2 122.2 (4)
O2—C8—N2 120.6 (4) C4—C3—Br1 119.3 (3)
O2—C8—C9 121.8 (4) C2—C3—Br1 118.5 (3)
N2—C8—C9 117.6 (4) C5—C4—C3 118.9 (4)
C8—N2—N1 117.3 (3) C5—C4—H4 120.5
C8—N2—H2 120 (3) C3—C4—H4 120.5
N1—N2—H2 123 (3) O3—C10—C11 123.1 (4)
C7—N1—N2 119.8 (3) O3—C10—C9 117.7 (3)
C2—O1—H1 109.5 C11—C10—C9 119.1 (4)
N1—C7—C1 118.4 (3) C12—C11—C10 121.2 (4)
N1—C7—H7 120.8 C12—C11—H11 119.4
C1—C7—H7 120.8 C10—C11—H11 119.4
O1—C2—C3 119.6 (3) O3—C15—H15A 109.5
O1—C2—C1 122.5 (3) O3—C15—H15B 109.5
C3—C2—C1 117.9 (3) H15A—C15—H15B 109.5
C5—C6—C1 119.6 (4) O3—C15—H15C 109.5
C5—C6—H6 120.2 H15A—C15—H15C 109.5
C1—C6—H6 120.2 H15B—C15—H15C 109.5
C10—C9—C14 118.1 (4) C13—C14—C9 120.6 (4)
C10—C9—C8 126.1 (4) C13—C14—H14 119.7
C14—C9—C8 115.9 (4) C9—C14—H14 119.7
C6—C1—C2 119.8 (4) C14—C13—C12 121.0 (5)
C6—C1—C7 119.3 (4) C14—C13—H13 119.5
C2—C1—C7 120.9 (3) C12—C13—H13 119.5
C6—C5—C4 121.5 (4) C11—C12—C13 119.9 (4)
C6—C5—Cl1 119.8 (4) C11—C12—H12 120.0
C4—C5—Cl1 118.6 (3) C13—C12—H12 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.83 2.549 (4) 146
N2—H2···O3 0.90 (1) 1.92 (3) 2.623 (4) 134 (4)
C6—H6···O2i 0.93 2.45 3.315 (6) 154

Symmetry codes: (i) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2301).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [DOI] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  6. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem.14, 7482–7489. [DOI] [PubMed]
  7. Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. [DOI] [PMC free article] [PubMed]
  8. Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem.41, 353–359. [DOI] [PubMed]
  9. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010198/rz2301sup1.cif

e-65-0o851-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010198/rz2301Isup2.hkl

e-65-0o851-Isup2.hkl (114.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES