Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):o877. doi: 10.1107/S1600536809010459

N-(3,4-Dimethyl­phen­yl)-4-methyl­benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hiromitsu Terao c, Hartmut Fuess b
PMCID: PMC2969044  PMID: 21582588

Abstract

In the crystal structure of the title compound, C15H17NO2S, the conformations of the N—C bond in the C—SO2—NH—C segment are trans and gauche, respectively, with respect to the S=O bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −61.8 (2)°. Furthermore, the conformation of the N—H bond and the 3-methyl group in the aniline benzene ring are nearly anti to each other. The dihedral angle between the benzene rings is 47.8 (1)°. In the crystal, N—H⋯O hydrogen bonds link the molecules into chains.

Related literature

For the preparation of the compound, see: Shetty & Gowda (2005). For related structures, see: Gelbrich et al. (2007); Gowda et al. (2008a ,b ; 2009); Perlovich et al. (2006)graphic file with name e-65-0o877-scheme1.jpg

Experimental

Crystal data

  • C15H17NO2S

  • M r = 275.36

  • Monoclinic, Inline graphic

  • a = 9.2528 (7) Å

  • b = 15.329 (1) Å

  • c = 10.4469 (7) Å

  • β = 102.558 (7)°

  • V = 1446.30 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.45 × 0.40 × 0.34 mm

Data collection

  • Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.907, T max = 0.929

  • 10438 measured reflections

  • 2902 independent reflections

  • 2360 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.127

  • S = 1.06

  • 2902 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010459/fl2240sup1.cif

e-65-0o877-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010459/fl2240Isup2.hkl

e-65-0o877-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.42 2.963 (2) 122

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As part of our study of substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008a; b; 2009), in the present work, the structure of 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide (N34DMP4MBSA) has been determined. The conformations of the N—C bond in the C—SO2—NH—C segment of the structure are "trans" and "gauche" with respect to the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -61.8 (2). The conformation of the N—H bond and the meta-methyl group in the anilino benzene ring are nearly anti to each other. The two benzene rings in the title compound are tilted relative to each other by 47.8 (1)°. The other bond parameters in N34DMP4MBSA are similar to those observed in N-(2,6-dimethylphenyl)-benzenesulfonamide (Gowda et al., 2008a), N-(2,3-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2009), N-(3,5-dichlorophenyl)- benzenesulfonamide (Gowda et al., 2008b)) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The N—H···O hydrogen bonds (Table 1) pack the molecules into infinite chains in the direction of a- axis (Fig. 2).

Experimental

The solution of toluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant 4-methyl-N-(3,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). For methyl group Uiso(H) = 1.5 Ueq.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C15H17NO2S F(000) = 584
Mr = 275.36 Dx = 1.265 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5065 reflections
a = 9.2528 (7) Å θ = 2.3–27.3°
b = 15.329 (1) Å µ = 0.22 mm1
c = 10.4469 (7) Å T = 299 K
β = 102.558 (7)° Prism, colourless
V = 1446.30 (17) Å3 0.45 × 0.40 × 0.34 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer 2902 independent reflections
Radiation source: fine-focus sealed tube 2360 reflections with I > 2σ(I)
graphite Rint = 0.014
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) h = −11→11
Tmin = 0.907, Tmax = 0.929 k = −19→19
10438 measured reflections l = −13→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.5487P] where P = (Fo2 + 2Fc2)/3
2902 reflections (Δ/σ)max = 0.014
175 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0832 (2) 0.11183 (12) 0.41984 (18) 0.0420 (4)
C2 0.2056 (3) 0.08904 (16) 0.5149 (2) 0.0618 (6)
H2 0.2382 0.1249 0.5872 0.074*
C3 0.2793 (3) 0.01242 (17) 0.5015 (2) 0.0676 (7)
H3 0.3623 −0.0027 0.5653 0.081*
C4 0.2330 (3) −0.04188 (14) 0.3963 (2) 0.0539 (5)
C5 0.1119 (3) −0.01764 (17) 0.3024 (3) 0.0703 (7)
H5 0.0800 −0.0534 0.2299 0.084*
C6 0.0366 (3) 0.05845 (16) 0.3129 (2) 0.0640 (6)
H6 −0.0454 0.0737 0.2481 0.077*
C7 0.2234 (2) 0.30486 (12) 0.40062 (17) 0.0395 (4)
C8 0.2693 (2) 0.35604 (12) 0.51153 (18) 0.0457 (5)
H8 0.1995 0.3769 0.5560 0.055*
C9 0.4176 (2) 0.37672 (12) 0.55727 (19) 0.0485 (5)
C10 0.5221 (2) 0.34840 (13) 0.4878 (2) 0.0489 (5)
C11 0.4742 (2) 0.29740 (14) 0.3767 (2) 0.0522 (5)
H11 0.5430 0.2777 0.3304 0.063*
C12 0.3270 (2) 0.27524 (13) 0.33332 (19) 0.0468 (5)
H12 0.2976 0.2406 0.2592 0.056*
C13 0.3163 (3) −0.12473 (17) 0.3828 (3) 0.0770 (8)
H13A 0.3446 −0.1526 0.4668 0.092*
H13B 0.4033 −0.1111 0.3507 0.092*
H13C 0.2540 −0.1632 0.3223 0.092*
C14 0.4651 (3) 0.42967 (18) 0.6811 (2) 0.0709 (7)
H14A 0.3803 0.4426 0.7167 0.085*
H14B 0.5098 0.4831 0.6614 0.085*
H14C 0.5355 0.3969 0.7440 0.085*
C15 0.6836 (3) 0.37166 (18) 0.5317 (3) 0.0703 (7)
H15A 0.7240 0.3435 0.6138 0.084*
H15B 0.6935 0.4337 0.5422 0.084*
H15C 0.7361 0.3525 0.4670 0.084*
N1 0.06920 (18) 0.28438 (10) 0.35435 (15) 0.0435 (4)
H1N 0.0181 0.3106 0.2867 0.052*
O1 −0.15757 (16) 0.20372 (11) 0.35826 (15) 0.0568 (4)
O2 0.02022 (16) 0.23588 (11) 0.56602 (12) 0.0528 (4)
S1 −0.00854 (5) 0.21086 (3) 0.43102 (4) 0.04195 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0434 (10) 0.0444 (10) 0.0383 (9) −0.0001 (8) 0.0092 (8) 0.0027 (8)
C2 0.0734 (15) 0.0639 (14) 0.0413 (11) 0.0187 (12) −0.0029 (10) −0.0019 (10)
C3 0.0755 (16) 0.0693 (15) 0.0529 (13) 0.0232 (13) 0.0030 (12) 0.0091 (11)
C4 0.0597 (13) 0.0427 (10) 0.0653 (13) 0.0000 (9) 0.0264 (11) 0.0074 (10)
C5 0.0685 (15) 0.0616 (14) 0.0763 (17) −0.0044 (12) 0.0057 (13) −0.0236 (12)
C6 0.0542 (13) 0.0652 (14) 0.0641 (14) 0.0050 (11) −0.0057 (11) −0.0163 (11)
C7 0.0498 (11) 0.0377 (9) 0.0295 (8) 0.0055 (8) 0.0058 (7) 0.0037 (7)
C8 0.0596 (12) 0.0420 (10) 0.0360 (9) 0.0058 (9) 0.0114 (8) −0.0013 (8)
C9 0.0655 (13) 0.0388 (10) 0.0375 (10) −0.0009 (9) 0.0030 (9) 0.0002 (8)
C10 0.0520 (11) 0.0421 (10) 0.0486 (11) 0.0011 (9) 0.0022 (9) 0.0074 (9)
C11 0.0552 (12) 0.0548 (12) 0.0492 (12) 0.0074 (10) 0.0167 (10) 0.0008 (9)
C12 0.0583 (12) 0.0490 (11) 0.0326 (9) 0.0028 (9) 0.0085 (8) −0.0041 (8)
C13 0.0853 (18) 0.0517 (13) 0.101 (2) 0.0086 (13) 0.0348 (16) 0.0037 (13)
C14 0.0883 (18) 0.0665 (15) 0.0534 (13) −0.0132 (13) 0.0054 (12) −0.0177 (11)
C15 0.0580 (14) 0.0666 (15) 0.0796 (17) −0.0008 (12) 0.0001 (12) 0.0024 (13)
N1 0.0493 (9) 0.0485 (9) 0.0294 (7) 0.0078 (7) 0.0015 (7) 0.0064 (6)
O1 0.0413 (8) 0.0772 (11) 0.0495 (8) 0.0071 (7) 0.0042 (6) −0.0027 (7)
O2 0.0600 (9) 0.0693 (9) 0.0299 (7) 0.0067 (7) 0.0118 (6) −0.0016 (6)
S1 0.0414 (3) 0.0537 (3) 0.0298 (3) 0.0059 (2) 0.00563 (18) −0.00009 (18)

Geometric parameters (Å, °)

C1—C6 1.376 (3) C10—C11 1.389 (3)
C1—C2 1.379 (3) C10—C15 1.507 (3)
C1—S1 1.7557 (19) C11—C12 1.381 (3)
C2—C3 1.380 (3) C11—H11 0.9300
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.371 (3) C13—H13A 0.9600
C3—H3 0.9300 C13—H13B 0.9600
C4—C5 1.370 (3) C13—H13C 0.9600
C4—C13 1.508 (3) C14—H14A 0.9600
C5—C6 1.375 (3) C14—H14B 0.9600
C5—H5 0.9300 C14—H14C 0.9600
C6—H6 0.9300 C15—H15A 0.9600
C7—C12 1.382 (3) C15—H15B 0.9600
C7—C8 1.387 (3) C15—H15C 0.9600
C7—N1 1.438 (2) N1—S1 1.6369 (17)
C8—C9 1.388 (3) N1—H1N 0.8600
C8—H8 0.9300 O1—S1 1.4267 (15)
C9—C10 1.398 (3) O2—S1 1.4296 (13)
C9—C14 1.509 (3)
C6—C1—C2 119.82 (19) C10—C11—H11 119.2
C6—C1—S1 119.82 (16) C11—C12—C7 119.70 (18)
C2—C1—S1 120.30 (15) C11—C12—H12 120.1
C1—C2—C3 119.3 (2) C7—C12—H12 120.1
C1—C2—H2 120.4 C4—C13—H13A 109.5
C3—C2—H2 120.4 C4—C13—H13B 109.5
C4—C3—C2 121.5 (2) H13A—C13—H13B 109.5
C4—C3—H3 119.3 C4—C13—H13C 109.5
C2—C3—H3 119.3 H13A—C13—H13C 109.5
C5—C4—C3 118.3 (2) H13B—C13—H13C 109.5
C5—C4—C13 121.1 (2) C9—C14—H14A 109.5
C3—C4—C13 120.6 (2) C9—C14—H14B 109.5
C4—C5—C6 121.5 (2) H14A—C14—H14B 109.5
C4—C5—H5 119.3 C9—C14—H14C 109.5
C6—C5—H5 119.3 H14A—C14—H14C 109.5
C5—C6—C1 119.6 (2) H14B—C14—H14C 109.5
C5—C6—H6 120.2 C10—C15—H15A 109.5
C1—C6—H6 120.2 C10—C15—H15B 109.5
C12—C7—C8 119.37 (19) H15A—C15—H15B 109.5
C12—C7—N1 120.27 (17) C10—C15—H15C 109.5
C8—C7—N1 120.34 (17) H15A—C15—H15C 109.5
C7—C8—C9 121.13 (19) H15B—C15—H15C 109.5
C7—C8—H8 119.4 C7—N1—S1 119.68 (12)
C9—C8—H8 119.4 C7—N1—H1N 120.2
C8—C9—C10 119.58 (18) S1—N1—H1N 120.2
C8—C9—C14 120.0 (2) O1—S1—O2 119.82 (9)
C10—C9—C14 120.4 (2) O1—S1—N1 105.59 (9)
C11—C10—C9 118.52 (19) O2—S1—N1 106.90 (9)
C11—C10—C15 120.1 (2) O1—S1—C1 108.88 (9)
C9—C10—C15 121.3 (2) O2—S1—C1 107.97 (9)
C12—C11—C10 121.7 (2) N1—S1—C1 107.01 (9)
C12—C11—H11 119.2
C6—C1—C2—C3 −0.4 (4) C14—C9—C10—C15 −1.7 (3)
S1—C1—C2—C3 −177.58 (19) C9—C10—C11—C12 0.7 (3)
C1—C2—C3—C4 −0.4 (4) C15—C10—C11—C12 −179.7 (2)
C2—C3—C4—C5 1.0 (4) C10—C11—C12—C7 0.6 (3)
C2—C3—C4—C13 179.2 (2) C8—C7—C12—C11 −0.4 (3)
C3—C4—C5—C6 −0.8 (4) N1—C7—C12—C11 178.19 (17)
C13—C4—C5—C6 −179.0 (2) C12—C7—N1—S1 105.46 (18)
C4—C5—C6—C1 0.0 (4) C8—C7—N1—S1 −75.9 (2)
C2—C1—C6—C5 0.6 (4) C7—N1—S1—O1 −177.68 (14)
S1—C1—C6—C5 177.8 (2) C7—N1—S1—O2 53.68 (16)
C12—C7—C8—C9 −1.1 (3) C7—N1—S1—C1 −61.80 (15)
N1—C7—C8—C9 −179.75 (16) C6—C1—S1—O1 26.4 (2)
C7—C8—C9—C10 2.5 (3) C2—C1—S1—O1 −156.35 (18)
C7—C8—C9—C14 −177.67 (19) C6—C1—S1—O2 157.99 (18)
C8—C9—C10—C11 −2.3 (3) C2—C1—S1—O2 −24.8 (2)
C14—C9—C10—C11 177.9 (2) C6—C1—S1—N1 −87.25 (19)
C8—C9—C10—C15 178.14 (19) C2—C1—S1—N1 89.97 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.86 2.42 2.963 (2) 122

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2240).

References

  1. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o2190. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o366. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  6. Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  7. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809010459/fl2240sup1.cif

e-65-0o877-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010459/fl2240Isup2.hkl

e-65-0o877-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES