Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o874. doi: 10.1107/S1600536809010307

2-(4-Chloro­phen­yl)-3-p-tolyl-1,3-thia­zolidin-4-one

Xiao-Jun Sun a,*, Jian-Feng Zhou a, Zai-Chao Zhang a, Yu-Jie Wang a
PMCID: PMC2969045  PMID: 21582585

Abstract

The title compound, C16H14ClNOS, a potent anti­bacterial chemical, features a dihedral angle of 49.4 (1)° between the 4-tolyl and thia­zolidinone rings, and a dihedral angle of 87.2 (5)° between the thia­zolidinone and 4-chloro­phenyl rings.

Related literature

For the synthesis, see: Srivastava et al. (2002).graphic file with name e-65-0o874-scheme1.jpg

Experimental

Crystal data

  • C16H14ClNOS

  • M r = 303.79

  • Orthorhombic, Inline graphic

  • a = 12.1591 (4) Å

  • b = 13.0708 (4) Å

  • c = 18.5125 (7) Å

  • V = 2942.18 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.40 × 0.35 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.85, T max = 0.92

  • 16959 measured reflections

  • 3377 independent reflections

  • 2205 reflections with I > 2˘I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.115

  • S = 1.02

  • 3377 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010307/ng2565sup1.cif

e-65-0o874-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010307/ng2565Isup2.hkl

e-65-0o874-Isup2.hkl (165.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by Jiangsu Key Laboratory of the Chemistry of Low-Dimensional Materials.

supplementary crystallographic information

Comment

4-thiazolidinone ring system comprises the broad spectrum for a number of biologically active compounds.In recent years, 4-thiazolidinones are the most extensively investigated class of compounds, which exhibits various biological activities, such as anticancer, antitubercular, antibacterial and herbicidal activities. In view of these properties and in a continuation of our interest in the chemistry of 4-thiazolidinones, we have attempted to synthesize a series of 4-thiazolidinone derivatives, some of which have comparatively high antibacterial activity. The crystal structure determination of the title compound,(I), was undertaken to investigate the relationship between structure and antibacterial activity(Fig. 1). The molecular conformation is described by the dihedral angle between 4-methylbenzene ring and thiazolidinone ring of 49.4 (1)° and the dihedral angle between thiazolidinone ring and 4-chlorobenzene ring of 87.2 (5)°.

Experimental

Compound (I) was synthesized according to the procedure of Tumul Srivastava et al. (2002). A crystal of (I) suitable for X-ray analysis was grown from an ethanol solution by slow evaporation at room temperature.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.99 (methylene), 1.00 (methylidyne) and 0.98 Å(methyl), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering schem. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C16H14ClNOS F(000) = 1264
Mr = 303.79 Dx = 1.372 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2211 reflections
a = 12.1591 (4) Å θ = 2.5–25.0°
b = 13.0708 (4) Å µ = 0.40 mm1
c = 18.5125 (7) Å T = 296 K
V = 2942.18 (17) Å3 Plate, colorless
Z = 8 0.40 × 0.35 × 0.20 mm

Data collection

Bruker APEXII area-detector diffractometer 3377 independent reflections
Radiation source: fine-focus sealed tube 2205 reflections with I > 2˘I)
graphite Rint = 0.058
Detector resolution: 0 pixels mm-1 θmax = 27.5°, θmin = 2.2°
w\ scans h = −14→15
Absorption correction: multi-scan (SADABS; Bruker, 2000) k = −16→16
Tmin = 0.85, Tmax = 0.92 l = −24→24
16959 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.6312P] where P = (Fo2 + 2Fc2)/3
3377 reflections (Δ/σ)max = 0.002
182 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.66878 (17) 0.93240 (14) 0.34463 (11) 0.0402 (5)
H1 0.6105 0.9535 0.3112 0.048*
C2 0.85314 (18) 0.96718 (14) 0.30086 (12) 0.0399 (5)
C3 0.83681 (18) 1.05986 (15) 0.34764 (13) 0.0467 (6)
H3A 0.8310 1.1207 0.3179 0.056*
H3B 0.8990 1.0681 0.3800 0.056*
C4 0.62581 (16) 0.85053 (14) 0.39467 (11) 0.0368 (5)
C5 0.69556 (17) 0.79865 (16) 0.44122 (12) 0.0434 (5)
H5 0.7708 0.8112 0.4391 0.052*
C6 0.65582 (18) 0.72901 (15) 0.49046 (12) 0.0441 (5)
H6 0.7033 0.6949 0.5217 0.053*
C7 0.54441 (18) 0.71086 (15) 0.49257 (12) 0.0429 (5)
C8 0.47397 (18) 0.75886 (19) 0.44628 (14) 0.0546 (6)
H8 0.3990 0.7448 0.4478 0.065*
C9 0.51497 (18) 0.82863 (18) 0.39704 (13) 0.0508 (6)
H9 0.4673 0.8611 0.3652 0.061*
C10 0.76107 (17) 0.81131 (14) 0.25927 (11) 0.0380 (5)
C11 0.84795 (18) 0.74324 (15) 0.25858 (13) 0.0468 (5)
H11 0.9090 0.7546 0.2877 0.056*
C12 0.8436 (2) 0.65774 (16) 0.21407 (14) 0.0552 (6)
H12 0.9030 0.6130 0.2130 0.066*
C13 0.7532 (2) 0.63756 (16) 0.17140 (12) 0.0519 (6)
C14 0.6660 (2) 0.70546 (16) 0.17427 (12) 0.0510 (6)
H14 0.6037 0.6929 0.1465 0.061*
C15 0.66950 (18) 0.79175 (15) 0.21761 (12) 0.0433 (5)
H15 0.6101 0.8365 0.2186 0.052*
C16 0.7492 (3) 0.54493 (19) 0.12222 (16) 0.0780 (9)
H16A 0.8176 0.5085 0.1252 0.117*
H16B 0.7372 0.5668 0.0733 0.117*
H16C 0.6902 0.5008 0.1370 0.117*
Cl1 0.49492 (5) 0.62309 (5) 0.55527 (4) 0.0680 (2)
N1 0.76603 (13) 0.90125 (11) 0.30369 (9) 0.0371 (4)
O1 0.93527 (13) 0.95428 (11) 0.26448 (9) 0.0529 (4)
S1 0.71335 (6) 1.04265 (4) 0.39863 (3) 0.0568 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0406 (12) 0.0425 (11) 0.0373 (12) 0.0056 (9) 0.0029 (10) 0.0017 (9)
C2 0.0395 (12) 0.0439 (11) 0.0364 (12) 0.0001 (9) −0.0021 (10) 0.0069 (9)
C3 0.0489 (13) 0.0427 (11) 0.0484 (14) −0.0029 (9) −0.0055 (11) 0.0022 (10)
C4 0.0358 (11) 0.0427 (10) 0.0319 (11) 0.0016 (8) 0.0025 (9) −0.0025 (9)
C5 0.0305 (11) 0.0568 (12) 0.0429 (13) −0.0040 (9) −0.0001 (10) 0.0055 (10)
C6 0.0405 (13) 0.0533 (12) 0.0385 (13) 0.0006 (9) −0.0027 (10) 0.0038 (10)
C7 0.0431 (13) 0.0470 (11) 0.0385 (12) −0.0054 (9) 0.0083 (10) −0.0005 (9)
C8 0.0306 (12) 0.0760 (15) 0.0571 (16) −0.0067 (10) 0.0021 (11) 0.0084 (13)
C9 0.0403 (13) 0.0668 (14) 0.0452 (14) 0.0062 (10) −0.0020 (11) 0.0077 (12)
C10 0.0431 (12) 0.0387 (10) 0.0322 (11) −0.0010 (8) 0.0073 (10) 0.0046 (8)
C11 0.0419 (13) 0.0472 (11) 0.0512 (15) 0.0024 (9) 0.0064 (11) 0.0056 (10)
C12 0.0616 (16) 0.0423 (11) 0.0616 (17) 0.0112 (10) 0.0206 (14) 0.0076 (11)
C13 0.0736 (17) 0.0411 (11) 0.0409 (13) −0.0031 (11) 0.0150 (13) 0.0008 (10)
C14 0.0659 (16) 0.0492 (12) 0.0379 (13) −0.0041 (11) −0.0044 (12) 0.0001 (10)
C15 0.0489 (13) 0.0429 (11) 0.0381 (12) 0.0045 (9) −0.0015 (10) 0.0013 (9)
C16 0.120 (2) 0.0507 (14) 0.0634 (18) 0.0008 (15) 0.0190 (18) −0.0083 (13)
Cl1 0.0592 (4) 0.0747 (4) 0.0701 (5) −0.0107 (3) 0.0135 (3) 0.0234 (4)
N1 0.0368 (9) 0.0405 (8) 0.0339 (9) −0.0006 (7) 0.0038 (8) −0.0005 (7)
O1 0.0424 (9) 0.0556 (9) 0.0606 (11) −0.0043 (7) 0.0109 (8) 0.0000 (8)
S1 0.0723 (5) 0.0469 (3) 0.0513 (4) −0.0062 (3) 0.0169 (3) −0.0087 (3)

Geometric parameters (Å, °)

C1—N1 1.462 (2) C8—C9 1.382 (3)
C1—C4 1.509 (3) C8—H8 0.9300
C1—S1 1.836 (2) C9—H9 0.9300
C1—H1 0.9800 C10—C15 1.378 (3)
C2—O1 1.216 (2) C10—C11 1.381 (3)
C2—N1 1.366 (3) C10—N1 1.436 (2)
C2—C3 1.502 (3) C11—C12 1.390 (3)
C3—S1 1.787 (2) C11—H11 0.9300
C3—H3A 0.9700 C12—C13 1.378 (3)
C3—H3B 0.9700 C12—H12 0.9300
C4—C9 1.378 (3) C13—C14 1.384 (3)
C4—C5 1.386 (3) C13—C16 1.516 (3)
C5—C6 1.376 (3) C14—C15 1.385 (3)
C5—H5 0.9300 C14—H14 0.9300
C6—C7 1.376 (3) C15—H15 0.9300
C6—H6 0.9300 C16—H16A 0.9600
C7—C8 1.364 (3) C16—H16B 0.9600
C7—Cl1 1.740 (2) C16—H16C 0.9600
N1—C1—C4 113.63 (15) C4—C9—H9 119.7
N1—C1—S1 105.19 (13) C8—C9—H9 119.7
C4—C1—S1 108.94 (14) C15—C10—C11 119.55 (19)
N1—C1—H1 109.6 C15—C10—N1 120.41 (18)
C4—C1—H1 109.6 C11—C10—N1 120.04 (19)
S1—C1—H1 109.6 C10—C11—C12 119.6 (2)
O1—C2—N1 124.76 (19) C10—C11—H11 120.2
O1—C2—C3 122.66 (19) C12—C11—H11 120.2
N1—C2—C3 112.58 (19) C13—C12—C11 121.6 (2)
C2—C3—S1 108.30 (14) C13—C12—H12 119.2
C2—C3—H3A 110.0 C11—C12—H12 119.2
S1—C3—H3A 110.0 C12—C13—C14 117.8 (2)
C2—C3—H3B 110.0 C12—C13—C16 121.6 (2)
S1—C3—H3B 110.0 C14—C13—C16 120.7 (3)
H3A—C3—H3B 108.4 C13—C14—C15 121.4 (2)
C9—C4—C5 118.47 (19) C13—C14—H14 119.3
C9—C4—C1 120.36 (19) C15—C14—H14 119.3
C5—C4—C1 121.12 (18) C10—C15—C14 120.0 (2)
C6—C5—C4 121.38 (19) C10—C15—H15 120.0
C6—C5—H5 119.3 C14—C15—H15 120.0
C4—C5—H5 119.3 C13—C16—H16A 109.5
C5—C6—C7 118.6 (2) C13—C16—H16B 109.5
C5—C6—H6 120.7 H16A—C16—H16B 109.5
C7—C6—H6 120.7 C13—C16—H16C 109.5
C8—C7—C6 121.4 (2) H16A—C16—H16C 109.5
C8—C7—Cl1 120.35 (17) H16B—C16—H16C 109.5
C6—C7—Cl1 118.25 (17) C2—N1—C10 121.80 (17)
C7—C8—C9 119.4 (2) C2—N1—C1 118.11 (16)
C7—C8—H8 120.3 C10—N1—C1 119.39 (15)
C9—C8—H8 120.3 C3—S1—C1 93.39 (9)
C4—C9—C8 120.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2565).

References

  1. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Srivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010307/ng2565sup1.cif

e-65-0o874-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010307/ng2565Isup2.hkl

e-65-0o874-Isup2.hkl (165.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES