Abstract
The anticonvulsant valproic acid (VPA, 2-n-propylpentanoic acid) causes inhibition of the citric acid cycle and elevations of central nervous system (CNS) gamma-aminobutyric acid (GABA) levels, which correlates with anticonvulsant action. No unifying mechanism for these actions of VPA has won general acceptance. alpha-Ketoglutarate dehydrogenase complex (KDHC) is a critical control enzyme in the CNS. We hypothesized that VPA may be an inhibitor of this enzyme since decreased KDHC activity would reduce substrate flux through the citric acid cycle and may increase flux into GABA synthesis. To test this hypothesis, inhibition of purified beef brain KDHC by VPA and its metabolites 2-n-propylpent-2-enoic acid (delta 2,3 VPE) and their coenzyme A (CoA) derivatives were studied. Preincubation of the NADH-reduced enzyme with delta 2,3 VPE, VPA-CoA, and delta 2,3 VPE-CoA caused time-dependent inactivation, reversible by addition of CoA. Under steady-state conditions, delta 2,3 VPE and VPA-CoA were competitive inhibitors of KDHC and delta 2,3 VPE-CoA was a mixed inhibitor. These observations have implications for the molecular mechanisms of VPA action. VPA derivatives cause inactivation and inhibition of KDHC, which may explain the anticonvulsant and some toxic actions of VPA.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aly M. I., Abdel-Latif A. A. Studies on distribution and metabolism of valproate in rat brain, liver, and kidney. Neurochem Res. 1980 Dec;5(12):1231–1242. doi: 10.1007/BF00964959. [DOI] [PubMed] [Google Scholar]
- Barrera C. R., Namihira G., Hamilton L., Munk P., Eley M. H., Linn T. C., Reed L. J. -Keto acid dehydrogenase complexes. XVI. Studies on the subunit structure of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch Biochem Biophys. 1972 Feb;148(2):343–358. doi: 10.1016/0003-9861(72)90152-x. [DOI] [PubMed] [Google Scholar]
- Becker C. M., Harris R. A. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Arch Biochem Biophys. 1983 Jun;223(2):381–392. doi: 10.1016/0003-9861(83)90602-1. [DOI] [PubMed] [Google Scholar]
- Bernert J. T., Jr, Sprecher H. An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids by rat liver microsomes. J Biol Chem. 1977 Oct 10;252(19):6736–6744. [PubMed] [Google Scholar]
- Causey A. G., Middleton B., Bartlett K. A study of the metabolism of [U-14C]3-methyl-2-oxopentanoate by rat liver mitochondria using h.p.l.c. with continuous on-line monitoring of radioactive intact acyl-coenzyme A intermediates. Biochem J. 1986 Apr 15;235(2):343–350. doi: 10.1042/bj2350343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman A., Keane P. E., Meldrum B. S., Simiand J., Vernieres J. C. Mechanism of anticonvulsant action of valproate. Prog Neurobiol. 1982;19(4):315–359. doi: 10.1016/0301-0082(82)90010-7. [DOI] [PubMed] [Google Scholar]
- Cunningham J., Clarke D. D., Nicklas W. J. Oxidative metabolism of 4-aminobutyrate by rat brain mitochondria: inhibition by branched-chain fatty acid. J Neurochem. 1980 Jan;34(1):197–202. doi: 10.1111/j.1471-4159.1980.tb04640.x. [DOI] [PubMed] [Google Scholar]
- Haas R., Stumpf D. A., Parks J. K., Eguren L. Inhibitory effects of sodium valproate on oxidative phosphorylation. Neurology. 1981 Nov;31(11):1473–1476. doi: 10.1212/wnl.31.11.1473. [DOI] [PubMed] [Google Scholar]
- Harding G. F., Herrick C. E., Jeavons P. M. A controlled study of the effect of sodium valproate on photosensitive epilepsy and its prognosis. Epilepsia. 1978 Dec;19(6):555–565. doi: 10.1111/j.1528-1157.1978.tb05036.x. [DOI] [PubMed] [Google Scholar]
- Hirashima M., Hayakawa T., Koike M. Mammalian alpha-keto acid dehydrogenase complexes. II. An improved procedure for the preparation of 2-oxoglutarate dehydrogenase complex from pig heart muscle. J Biol Chem. 1967 Mar 10;242(5):902–907. [PubMed] [Google Scholar]
- Ishikawa E., Oliver R. M., Reed L. J. Alpha-Keto acid dehydrogenase complexes, V. Macromolecular organization of pyruvate and alpha-ketoglutarate dehydrogenase complexes isolated from beef kidney mitochondria. Proc Natl Acad Sci U S A. 1966 Aug;56(2):534–541. doi: 10.1073/pnas.56.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson R. H., Singer T. P. Inactivation of the 2-ketoglutarate and pyruvate dehydrogenase complexes of beef heart by branched chain keto acids. J Biol Chem. 1983 Feb 10;258(3):1857–1865. [PubMed] [Google Scholar]
- Kanzaki T., Hayakawa T., Hamada M., Fukuyoshi Y., Koike M. Mammalian alpha-keto acid dehydrogenase complexes. IV. Substrate specificities and kinetic properties of the pig heart pyruvate and 2-oxyoglutarate dehydrogenase complexes. J Biol Chem. 1969 Mar 10;244(5):1183–1187. [PubMed] [Google Scholar]
- Koike M., Koike K. Structure, assembly and function of mammalian alpha-keto acid dehydrogenase complexes. Adv Biophys. 1976:187–227. [PubMed] [Google Scholar]
- Kukino K., Deguchi T. Effects of sodium dipropylacetate on gamma-aminobutyric acid and biogenic amines in rat brain. Chem Pharm Bull (Tokyo) 1977 Sep;25(9):2257–2262. doi: 10.1248/cpb.25.2257. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lai J. C., Clark J. B. Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol. 1979;55:51–60. doi: 10.1016/0076-6879(79)55008-3. [DOI] [PubMed] [Google Scholar]
- Lai J. C., Cooper A. J. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem. 1986 Nov;47(5):1376–1386. doi: 10.1111/j.1471-4159.1986.tb00768.x. [DOI] [PubMed] [Google Scholar]
- Lockard J. S., Levy R. H. Valproic acid: reversibly acting drug? Epilepsia. 1976 Dec;17(4):477–479. doi: 10.1111/j.1528-1157.1976.tb04459.x. [DOI] [PubMed] [Google Scholar]
- Löscher W., Nau H. Distribution of valproic acid and its metabolites in various brain areas of dogs and rats after acute and prolonged treatment. J Pharmacol Exp Ther. 1983 Sep;226(3):845–854. [PubMed] [Google Scholar]
- Löscher W., Nau H., Marescaux C., Vergnes M. Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur J Pharmacol. 1984 Mar 23;99(2-3):211–218. doi: 10.1016/0014-2999(84)90243-7. [DOI] [PubMed] [Google Scholar]
- MASSEY V. The composition of the ketoglutarate dehydrogenase complex. Biochim Biophys Acta. 1960 Mar 11;38:447–460. doi: 10.1016/0006-3002(60)91280-4. [DOI] [PubMed] [Google Scholar]
- MEUNIER H., CARRAZ G., NEUNIER Y., EYMARD P., AIMARD M. [Pharmacodynamic properties of N-dipropylacetic acid]. Therapie. 1963 Mar-Apr;18:435–438. [PubMed] [Google Scholar]
- Martin-Requero A., Corkey B. E., Cerdan S., Walajtys-Rode E., Parrilla R. L., Williamson J. R. Interactions between alpha-ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes. J Biol Chem. 1983 Mar 25;258(6):3673–3681. [PubMed] [Google Scholar]
- McMinn C. L., Ottaway J. H. Studies on the mechanism and kinetics of the 2-oxoglutarate dehydrogenase system from pig heart. Biochem J. 1977 Mar 1;161(3):569–581. doi: 10.1042/bj1610569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers D. E., Utter M. F. The enzymatic synthesis of some potential photoaffinity analogs of benzoyl-coenzyme A. Anal Biochem. 1981 Mar 15;112(1):23–29. doi: 10.1016/0003-2697(81)90255-4. [DOI] [PubMed] [Google Scholar]
- Nau H., Löscher W. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse. J Pharmacol Exp Ther. 1982 Mar;220(3):654–659. [PubMed] [Google Scholar]
- Parker P. J., Randle P. J. Partial purification and properties of branched-chain 2-oxo acid dehydrogenase of ox liver. Biochem J. 1978 Jun 1;171(3):751–757. doi: 10.1042/bj1710751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perham R. N., Thomas J. O. The subunit molecular weights of the alpha-ketoacid dehydrogenase multienzyme complexes from E. coli. FEBS Lett. 1971 Jun 2;15(1):8–12. doi: 10.1016/0014-5793(71)80066-2. [DOI] [PubMed] [Google Scholar]
- Simler S., Ciesielski L., Maitre M., Randrianarisoa H., Mandel P. Effect of sodium n-dipropylacetate on audiogenic seizures and brain -aminobutyric acid level. Biochem Pharmacol. 1973 Jul 15;22(14):1701–1708. doi: 10.1016/0006-2952(73)90383-3. [DOI] [PubMed] [Google Scholar]
- Smith C. M., Bryla J., Williamson J. R. Regulation of mitochondrial alpha-ketoglutarate metabolism by product inhibition at alpha-ketoglutarate dehydrogenase. J Biol Chem. 1974 Mar 10;249(5):1497–1505. [PubMed] [Google Scholar]
- Tanaka N., Koike K., Otsuka K., Hamada M., Ogasahara K. Mammalian alpha-keto acid dehydrogenase complexes. 8. Properties and subunit composition of the pig heart lipoate succinyltransferase. J Biol Chem. 1974 Jan 10;249(1):191–198. [PubMed] [Google Scholar]
- Turnbull D. M., Bone A. J., Bartlett K., Koundakjian P. P., Sherratt H. S. The effects of valproate on intermediary metabolism in isolated rat hepatocytes and intact rats. Biochem Pharmacol. 1983 Jun 15;32(12):1887–1892. doi: 10.1016/0006-2952(83)90054-0. [DOI] [PubMed] [Google Scholar]
- Turnbull D. M., Dick D. J., Wilson L., Sherratt H. S., Alberti K. G. Valproate causes metabolic disturbance in normal man. J Neurol Neurosurg Psychiatry. 1986 Apr;49(4):405–410. doi: 10.1136/jnnp.49.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walajtys-Rode E., Williamson J. R. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. III. Interactions with pyruvate dehydrogenase. J Biol Chem. 1980 Jan 25;255(2):413–418. [PubMed] [Google Scholar]
- Wałajtys-Rode E., Coll K. E., Williamson J. R. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. II. Interactions with gluconeogenesis and urea synthesis. J Biol Chem. 1979 Nov 25;254(22):11521–11529. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Williamson J. R., Wałajtys-Rode E., Coll K. E. Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. I. Regulation of branched chain alpha-ketoacid metabolism. J Biol Chem. 1979 Nov 25;254(22):11511–11520. [PubMed] [Google Scholar]
- Zimmerman H. J., Ishak K. G. Valproate-induced hepatic injury: analyses of 23 fatal cases. Hepatology. 1982 Sep-Oct;2(5):591–597. doi: 10.1002/hep.1840020513. [DOI] [PubMed] [Google Scholar]

