Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 31;65(Pt 4):m462–m463. doi: 10.1107/S160053680901099X

Di-μ-iodido-bis­{[dicyclo­hexyl(phen­yl)phosphine-κP](pyridine-κN)silver(I)}

Bernard Omondi a, Reinout Meijboom a,*
PMCID: PMC2969050  PMID: 21582395

Abstract

The title compound, [Ag2I2(C5H5N)2(C18H27P)2], contains centrosymmetric dinuclear species in which each Ag atom is surrounded by a phosphine ligand, a weakly coordinating pyridine ligand and two iodide anions in a distorted tetra­hedral coordination. The two iodide anions bridge the Ag atoms, which are separated by a distance of 3.1008 (6) Å. The Ag—P distance is 2.4436 (8) Å, Ag—N is 2.386 (3)Å and the Ag—I distances are 2.8186 (4) and 2.9449 (5) Å.

Related literature

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009). For the coordination chemistry of AgX salts (X = F, Cl, Br, I, BF4 , PF6 , NO3 etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential anti­tumor agents, see: Berners-Price et al. (1998); Liu et al. (2008). For tertiary phosphine silver(I) complexes of mixed-base species, see: Engelhardt et al. (1989); Gotsis et al. (1989); Meijboom & Muller (2006). The unsymmetrical core (Ag—I—Ag′—I′) may be attributed to the partial separation of dimer into monomer of such complexes, see: Bowmaker et al. (1996); Meijboom & Muller (2006). For the solution behaviour of [L nAgX] complexes, see: Muetterties & Alegranti (1972).graphic file with name e-65-0m462-scheme1.jpg

Experimental

Crystal data

  • [Ag2I2(C5H5N)2(C18H27P)2]

  • M r = 1176.47

  • Triclinic, Inline graphic

  • a = 9.5970 (12) Å

  • b = 9.9816 (13) Å

  • c = 14.1437 (18) Å

  • α = 90.484 (3)°

  • β = 102.404 (2)°

  • γ = 112.704 (2)°

  • V = 1214.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 293 K

  • 0.3 × 0.22 × 0.09 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.562, T max = 0.828

  • 7951 measured reflections

  • 5723 independent reflections

  • 4310 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.073

  • S = 1.02

  • 5723 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901099X/hg2494sup1.cif

e-65-0m462-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901099X/hg2494Isup2.hkl

e-65-0m462-Isup2.hkl (274.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Comparison of geometric parameters (Å, °) for selected [XAg(py)(P3)2] (X = Cl, Br or I) entities.

X Ag—X Ag—X Ag⋯Ag Ag—N Ag—P X—Ag—X Ag—I—Ag
Ia 2.8186 (4) 2.9449 (5) 3.1008 (6) 2.386 (3) 2.4436 (8) 114.947 (10) 65.053 (10)
Ib 2.8402 (12) 2.8644 (8) 3.1130 (18) 2.392 (3) 2.4489 (12) 113.84 (4) 66.16 (4)
Ic 2.814 2.875 3.343 2.422 2.440 108.02 71.98
Brc 2.701 2.733 3.499 2.391 2.415 99.85 80.15
Clc 2.614 2.618 3.507 2.402 2.400 95.82 84.18

Notes: (a) This work; (b) Meijboom & Muller (2006); (c) Gotsis et al. (1989), extracted from the Cambridge Structural Database (Allen (2002), CSD CODES are VEFRUT for X = I, VEFRON for X = Br and VEFRIH for X = Cl.

Acknowledgments

Financial assistance from the South African National Research Foundation and the University of Johannesburg is gratefully acknowledged. The University of the Witwatersrand (Professor D. Levendis and Professor D. G. Billing) is thanked for use of its diffractometer. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

supplementary crystallographic information

Comment

The chemistry of silver(I) complexes has been reviewed recently with regards to the coordination chemistry, the design of coordination networks and polymers containing nitrogen-donor ligands and to the chemistry of silver scorpionates and carboxylates (Meijboom et al., 2009). Our interest has been on the coordination chemistry of AgX salts (X- = F-, Cl-, Br-, I-, BF4-, PF6-, NO3-etc.) with Group 15 donor ligands with the main focus on tertiary phosphines and in their context as potential antitumor agents (Berners-Price et al., 1998; Liu et al., 2008).

Tertiary phosphine silver(I) complexes of mixed-base species have been reported but are not very common (Meijboom et al., 2009). Examples of these complexes include [XAg(py)(PPh3)2] (X = Cl or Br) (Engelhardt et al., 1989), [XAg(py)PPh3]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-p-tol-Ph3)]2 (Meijboom & Muller, 2006). The preparation of [IAg(py)(Pcy2Ph)]2 (I) is similar to those reported and involves heating together stoichiometric mixtures of silver(I)iodide and dicyclohexylphenylphosphine in pyridine solution.

As pointed out earlier by Meijboom & Muller (2006), the resulting complex comprises of a 1:1:1 µ,µ'-diiodo-bridged dimer. The Ag atoms of this centrosymmetric title compound are coordinated to a phosphine ligand, a pyridine ligand and two iodide anions in a distorted tetrahedral manner. The bond angles around the Ag atoms are listed in Table 1. The Ag—P, Ag—N and Ag—I bond distances are typical of similar complexes. However the difference in the Ag—I and Ag—I' bond distances [2.8186 (4) and 2.9449 (5) Å] which results in an unsymmetrical core (Ag—I—Ag'-I') of the complex has been attributed to the partial separation of dimer into monomer of such complexes (Bowmaker et al., 1996; Meijboom & Muller, 2006).

In comparison (see Table 2), the same Ag—X bond distance seems larger in (I) as compared to those in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I) (Gotsis et al., 1989) and [IAg(py)(P-(p-tol)3)]2 (Meijboom and Muller, 2006) which are only slightly different. The bond angles in the core (Ag—X—Ag' and X—Ag—X') are similar in (I), [IAg(py)(P-(p-tol)3)]2 and [XAg(py)(PPh3)]2.C5H5N (X = I). In these structures the Ag—X—Ag' is much smaller than X—Ag—X'. The situation is slightly different for [XAg(py)(PPh3)]2.C5H5N (X = Cl or Br) in which the two angles are closer to 90°. Similarly the Ag···Ag bond distances are shorter in (I) and [IAg(py)(P-(p-tol)3)]2 but increases in [XAg(py)(PPh3)]2.C5H5N (X = Cl, Br or I). Ag—P and Ag—N bond distances are comparable in all five structures listed in Table 2.

Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

Experimental

Silver iodide (0.130 g, 0.43 mmol) and dicyclohexylphenylphosphine (1.009 g, 0.86 mmol) were suspended in pyridine (5 ml). The mixture was heated to give a clear solution. Colourless crystals of the title compound suitable for X-ray crystallography were obtained by slow evaporation.

Refinement

All hydrogen atoms were positioned geometrically, with C—H = 0.97 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring. Primed atoms are generated by the symmetry code (1 - x, 1 - y, 1 - z).

Crystal data

[Ag2I2(C5H5N)2(C18H27P)2] Z = 1
Mr = 1176.47 F(000) = 584
Triclinic, P1 Dx = 1.609 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5970 (12) Å Cell parameters from 8087 reflections
b = 9.9816 (13) Å θ = 1.5–28°
c = 14.1437 (18) Å µ = 2.17 mm1
α = 90.484 (3)° T = 293 K
β = 102.404 (2)° Plate, colourless
γ = 112.704 (2)° 0.3 × 0.22 × 0.09 mm
V = 1214.4 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4310 reflections with I > 2σ(I)
ω scans Rint = 0.014
Absorption correction: multi-scan (SADABS; Bruker, 2004) θmax = 28°, θmin = 1.5°
Tmin = 0.562, Tmax = 0.828 h = −12→12
7951 measured reflections k = −11→13
5723 independent reflections l = −14→18

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0363P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073 (Δ/σ)max = 0.002
S = 1.01 Δρmax = 0.50 e Å3
5723 reflections Δρmin = −0.81 e Å3
244 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag 0.64528 (3) 0.51283 (3) 0.579194 (16) 0.04387 (8)
I 0.67657 (2) 0.67819 (2) 0.418646 (15) 0.04704 (8)
P 0.75790 (9) 0.61782 (8) 0.74849 (5) 0.03498 (17)
N 0.7116 (3) 0.3242 (3) 0.5233 (2) 0.0496 (7)
C11 0.8282 (4) 0.4979 (3) 0.8258 (2) 0.0420 (7)
H11 0.8702 0.545 0.8926 0.05*
C12 0.6951 (4) 0.3510 (4) 0.8252 (3) 0.0545 (9)
H12A 0.6467 0.3071 0.7587 0.065*
H12B 0.6171 0.366 0.8525 0.065*
C13 0.7541 (6) 0.2473 (5) 0.8845 (3) 0.0758 (12)
H13A 0.792 0.2863 0.9524 0.091*
H13B 0.6687 0.1531 0.8799 0.091*
C14 0.8837 (6) 0.2275 (5) 0.8483 (3) 0.0793 (13)
H14A 0.9225 0.1663 0.8897 0.095*
H14B 0.8427 0.1782 0.7828 0.095*
C15 1.0152 (5) 0.3712 (5) 0.8482 (3) 0.0745 (12)
H15A 1.0921 0.3552 0.8204 0.089*
H15B 1.0647 0.415 0.9147 0.089*
C16 0.9582 (4) 0.4757 (4) 0.7898 (3) 0.0535 (9)
H16A 0.9202 0.4372 0.7218 0.064*
H16B 1.0446 0.5692 0.7948 0.064*
C21 0.6083 (4) 0.6419 (3) 0.8017 (2) 0.0403 (7)
H21 0.5195 0.5473 0.7889 0.048*
C22 0.5502 (4) 0.7498 (4) 0.7480 (2) 0.0523 (8)
H22A 0.5176 0.7192 0.6787 0.063*
H22B 0.6344 0.8457 0.7585 0.063*
C23 0.4137 (5) 0.7582 (5) 0.7837 (3) 0.0680 (11)
H23A 0.3842 0.8322 0.752 0.082*
H23B 0.3253 0.6653 0.7659 0.082*
C24 0.4547 (5) 0.7946 (5) 0.8927 (3) 0.0713 (11)
H24A 0.5336 0.8932 0.9096 0.086*
H24B 0.3633 0.7912 0.9132 0.086*
C25 0.5139 (5) 0.6903 (5) 0.9458 (3) 0.0643 (10)
H25A 0.4306 0.5939 0.9355 0.077*
H25B 0.5458 0.7213 1.015 0.077*
C26 0.6511 (4) 0.6823 (4) 0.9116 (2) 0.0512 (8)
H26A 0.6819 0.6099 0.9447 0.061*
H26B 0.7386 0.776 0.9282 0.061*
C31 0.9209 (3) 0.7958 (3) 0.7758 (2) 0.0386 (7)
C32 0.9355 (4) 0.8901 (4) 0.7032 (2) 0.0473 (8)
H32 0.8637 0.8606 0.6435 0.057*
C33 1.0555 (5) 1.0272 (4) 0.7185 (3) 0.0628 (10)
H33 1.0619 1.0899 0.6698 0.075*
C34 1.1638 (5) 1.0704 (4) 0.8043 (4) 0.0713 (12)
H34 1.2464 1.1611 0.8134 0.086*
C35 1.1515 (5) 0.9803 (4) 0.8779 (3) 0.0714 (12)
H35 1.2242 1.011 0.9374 0.086*
C36 1.0303 (4) 0.8434 (4) 0.8631 (3) 0.0583 (9)
H36 1.0227 0.7828 0.913 0.07*
C41 0.6644 (5) 0.1923 (4) 0.5544 (3) 0.0605 (10)
H41 0.592 0.1694 0.5925 0.073*
C42 0.7168 (5) 0.0881 (4) 0.5333 (3) 0.0694 (11)
H42 0.6801 −0.0032 0.5562 0.083*
C43 0.8250 (5) 0.1217 (5) 0.4776 (3) 0.0759 (12)
H43 0.8629 0.0536 0.462 0.091*
C44 0.8749 (5) 0.2560 (5) 0.4461 (3) 0.0742 (12)
H44 0.9491 0.2818 0.4092 0.089*
C45 0.8155 (4) 0.3540 (4) 0.4688 (3) 0.0577 (9)
H45 0.8491 0.445 0.4453 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag 0.05080 (15) 0.04133 (14) 0.03791 (14) 0.01641 (11) 0.01097 (11) 0.00158 (10)
I 0.04314 (13) 0.04213 (13) 0.04845 (13) 0.00716 (9) 0.01405 (9) 0.01362 (9)
P 0.0372 (4) 0.0322 (4) 0.0333 (4) 0.0111 (3) 0.0089 (3) 0.0039 (3)
N 0.0534 (17) 0.0422 (16) 0.0540 (17) 0.0210 (13) 0.0105 (13) −0.0023 (13)
C11 0.0486 (18) 0.0421 (18) 0.0354 (16) 0.0202 (15) 0.0056 (13) 0.0075 (13)
C12 0.069 (2) 0.044 (2) 0.058 (2) 0.0240 (18) 0.0271 (18) 0.0196 (16)
C13 0.113 (4) 0.055 (2) 0.077 (3) 0.043 (3) 0.039 (3) 0.033 (2)
C14 0.116 (4) 0.065 (3) 0.083 (3) 0.061 (3) 0.029 (3) 0.025 (2)
C15 0.087 (3) 0.082 (3) 0.073 (3) 0.059 (3) 0.008 (2) 0.010 (2)
C16 0.049 (2) 0.056 (2) 0.060 (2) 0.0265 (18) 0.0120 (16) 0.0077 (17)
C21 0.0408 (16) 0.0372 (17) 0.0412 (17) 0.0113 (14) 0.0144 (13) 0.0015 (13)
C22 0.058 (2) 0.061 (2) 0.048 (2) 0.0319 (18) 0.0179 (16) 0.0101 (16)
C23 0.061 (2) 0.089 (3) 0.069 (3) 0.045 (2) 0.018 (2) 0.012 (2)
C24 0.072 (3) 0.083 (3) 0.077 (3) 0.041 (2) 0.036 (2) 0.006 (2)
C25 0.070 (3) 0.074 (3) 0.052 (2) 0.023 (2) 0.0297 (19) 0.0040 (19)
C26 0.060 (2) 0.058 (2) 0.0408 (18) 0.0264 (18) 0.0168 (16) 0.0084 (16)
C31 0.0359 (16) 0.0343 (16) 0.0443 (17) 0.0119 (13) 0.0106 (13) 0.0023 (13)
C32 0.0523 (19) 0.0419 (18) 0.0453 (18) 0.0133 (15) 0.0170 (15) 0.0050 (14)
C33 0.065 (2) 0.044 (2) 0.071 (3) 0.0054 (18) 0.029 (2) 0.0085 (18)
C34 0.051 (2) 0.041 (2) 0.107 (4) 0.0028 (17) 0.019 (2) −0.005 (2)
C35 0.058 (2) 0.049 (2) 0.081 (3) 0.0091 (19) −0.014 (2) −0.013 (2)
C36 0.057 (2) 0.049 (2) 0.055 (2) 0.0164 (18) −0.0032 (17) 0.0035 (17)
C41 0.066 (2) 0.050 (2) 0.069 (2) 0.0227 (19) 0.023 (2) 0.0046 (18)
C42 0.083 (3) 0.046 (2) 0.080 (3) 0.030 (2) 0.013 (2) 0.003 (2)
C43 0.080 (3) 0.068 (3) 0.094 (3) 0.050 (3) 0.012 (3) −0.009 (2)
C44 0.066 (3) 0.071 (3) 0.097 (3) 0.035 (2) 0.029 (2) −0.003 (2)
C45 0.053 (2) 0.052 (2) 0.069 (2) 0.0200 (18) 0.0172 (18) 0.0013 (18)

Geometric parameters (Å, °)

Ag—N 2.386 (3) C22—H22B 0.97
Ag—P 2.4436 (8) C23—C24 1.510 (5)
Ag—I 2.8186 (4) C23—H23A 0.97
Ag—Ii 2.9449 (5) C23—H23B 0.97
Ag—Agi 3.1008 (6) C24—C25 1.503 (5)
I—Agi 2.9449 (4) C24—H24A 0.97
P—C31 1.827 (3) C24—H24B 0.97
P—C11 1.847 (3) C25—C26 1.525 (5)
P—C21 1.847 (3) C25—H25A 0.97
N—C41 1.329 (4) C25—H25B 0.97
N—C45 1.334 (4) C26—H26A 0.97
C11—C12 1.527 (5) C26—H26B 0.97
C11—C16 1.532 (4) C31—C36 1.379 (4)
C11—H11 0.98 C31—C32 1.391 (4)
C12—C13 1.536 (5) C32—C33 1.384 (5)
C12—H12A 0.97 C32—H32 0.93
C12—H12B 0.97 C33—C34 1.358 (6)
C13—C14 1.521 (6) C33—H33 0.93
C13—H13A 0.97 C34—C35 1.376 (6)
C13—H13B 0.97 C34—H34 0.93
C14—C15 1.501 (6) C35—C36 1.389 (5)
C14—H14A 0.97 C35—H35 0.93
C14—H14B 0.97 C36—H36 0.93
C15—C16 1.526 (5) C41—C42 1.374 (5)
C15—H15A 0.97 C41—H41 0.93
C15—H15B 0.97 C42—C43 1.378 (6)
C16—H16A 0.97 C42—H42 0.93
C16—H16B 0.97 C43—C44 1.353 (6)
C21—C26 1.528 (4) C43—H43 0.93
C21—C22 1.530 (4) C44—C45 1.376 (5)
C21—H21 0.98 C44—H44 0.93
C22—C23 1.532 (5) C45—H45 0.93
C22—H22A 0.97
N—Ag—P 118.15 (7) C21—C22—H22A 109.4
N—Ag—I 98.31 (7) C23—C22—H22A 109.4
P—Ag—I 123.82 (2) C21—C22—H22B 109.4
N—Ag—Ii 95.85 (7) C23—C22—H22B 109.4
P—Ag—Ii 102.83 (2) H22A—C22—H22B 108
I—Ag—Ii 114.947 (10) C24—C23—C22 111.6 (3)
N—Ag—Agi 103.19 (7) C24—C23—H23A 109.3
P—Ag—Agi 135.80 (2) C22—C23—H23A 109.3
I—Ag—Agi 59.443 (10) C24—C23—H23B 109.3
Ii—Ag—Agi 55.505 (11) C22—C23—H23B 109.3
Ag—I—Agi 65.053 (10) H23A—C23—H23B 108
C31—P—C11 104.16 (14) C25—C24—C23 111.7 (3)
C31—P—C21 104.32 (14) C25—C24—H24A 109.3
C11—P—C21 105.76 (14) C23—C24—H24A 109.3
C31—P—Ag 119.07 (10) C25—C24—H24B 109.3
C11—P—Ag 112.57 (10) C23—C24—H24B 109.3
C21—P—Ag 109.89 (10) H24A—C24—H24B 107.9
C41—N—C45 116.9 (3) C24—C25—C26 111.9 (3)
C41—N—Ag 122.4 (2) C24—C25—H25A 109.2
C45—N—Ag 120.1 (2) C26—C25—H25A 109.2
C12—C11—C16 110.3 (3) C24—C25—H25B 109.2
C12—C11—P 110.5 (2) C26—C25—H25B 109.2
C16—C11—P 109.9 (2) H25A—C25—H25B 107.9
C12—C11—H11 108.7 C25—C26—C21 110.9 (3)
C16—C11—H11 108.7 C25—C26—H26A 109.5
P—C11—H11 108.7 C21—C26—H26A 109.5
C11—C12—C13 110.9 (3) C25—C26—H26B 109.5
C11—C12—H12A 109.5 C21—C26—H26B 109.5
C13—C12—H12A 109.5 H26A—C26—H26B 108.1
C11—C12—H12B 109.5 C36—C31—C32 117.7 (3)
C13—C12—H12B 109.5 C36—C31—P 124.7 (3)
H12A—C12—H12B 108 C32—C31—P 117.6 (2)
C14—C13—C12 111.5 (3) C33—C32—C31 121.0 (3)
C14—C13—H13A 109.3 C33—C32—H32 119.5
C12—C13—H13A 109.3 C31—C32—H32 119.5
C14—C13—H13B 109.3 C34—C33—C32 120.2 (4)
C12—C13—H13B 109.3 C34—C33—H33 119.9
H13A—C13—H13B 108 C32—C33—H33 119.9
C15—C14—C13 111.6 (4) C33—C34—C35 120.1 (3)
C15—C14—H14A 109.3 C33—C34—H34 119.9
C13—C14—H14A 109.3 C35—C34—H34 119.9
C15—C14—H14B 109.3 C34—C35—C36 119.7 (4)
C13—C14—H14B 109.3 C34—C35—H35 120.1
H14A—C14—H14B 108 C36—C35—H35 120.1
C14—C15—C16 111.4 (4) C31—C36—C35 121.2 (4)
C14—C15—H15A 109.4 C31—C36—H36 119.4
C16—C15—H15A 109.4 C35—C36—H36 119.4
C14—C15—H15B 109.4 N—C41—C42 123.5 (4)
C16—C15—H15B 109.4 N—C41—H41 118.2
H15A—C15—H15B 108 C42—C41—H41 118.2
C15—C16—C11 112.1 (3) C41—C42—C43 118.6 (4)
C15—C16—H16A 109.2 C41—C42—H42 120.7
C11—C16—H16A 109.2 C43—C42—H42 120.7
C15—C16—H16B 109.2 C44—C43—C42 118.5 (4)
C11—C16—H16B 109.2 C44—C43—H43 120.8
H16A—C16—H16B 107.9 C42—C43—H43 120.8
C26—C21—C22 110.5 (3) C43—C44—C45 119.7 (4)
C26—C21—P 116.8 (2) C43—C44—H44 120.2
C22—C21—P 110.4 (2) C45—C44—H44 120.2
C26—C21—H21 106.2 N—C45—C44 122.8 (4)
C22—C21—H21 106.2 N—C45—H45 118.6
P—C21—H21 106.2 C44—C45—H45 118.6
C21—C22—C23 111.1 (3)
N—Ag—I—Agi 100.46 (7) C31—P—C21—C26 −61.2 (3)
P—Ag—I—Agi −127.34 (3) C11—P—C21—C26 48.3 (3)
Ii—Ag—I—Agi 0 Ag—P—C21—C26 170.1 (2)
N—Ag—P—C31 102.47 (14) C31—P—C21—C22 66.0 (3)
I—Ag—P—C31 −21.28 (12) C11—P—C21—C22 175.6 (2)
Ii—Ag—P—C31 −153.61 (11) Ag—P—C21—C22 −62.7 (2)
Agi—Ag—P—C31 −100.40 (12) C26—C21—C22—C23 −55.6 (4)
N—Ag—P—C11 −19.81 (14) P—C21—C22—C23 173.7 (3)
I—Ag—P—C11 −143.57 (11) C21—C22—C23—C24 54.9 (5)
Ii—Ag—P—C11 84.11 (11) C22—C23—C24—C25 −54.4 (5)
Agi—Ag—P—C11 137.32 (11) C23—C24—C25—C26 54.9 (5)
N—Ag—P—C21 −137.39 (13) C24—C25—C26—C21 −55.8 (4)
I—Ag—P—C21 98.85 (11) C22—C21—C26—C25 55.9 (4)
Ii—Ag—P—C21 −33.48 (11) P—C21—C26—C25 −176.9 (2)
Agi—Ag—P—C21 19.73 (11) C11—P—C31—C36 −28.3 (3)
P—Ag—N—C41 68.4 (3) C21—P—C31—C36 82.4 (3)
I—Ag—N—C41 −155.9 (3) Ag—P—C31—C36 −154.7 (3)
Ii—Ag—N—C41 −39.6 (3) C11—P—C31—C32 151.8 (2)
Agi—Ag—N—C41 −95.5 (3) C21—P—C31—C32 −97.5 (3)
P—Ag—N—C45 −102.6 (3) Ag—P—C31—C32 25.4 (3)
I—Ag—N—C45 33.1 (3) C36—C31—C32—C33 −0.3 (5)
Ii—Ag—N—C45 149.5 (3) P—C31—C32—C33 179.6 (3)
Agi—Ag—N—C45 93.6 (3) C31—C32—C33—C34 1.8 (6)
C31—P—C11—C12 169.8 (2) C32—C33—C34—C35 −2.5 (6)
C21—P—C11—C12 60.2 (3) C33—C34—C35—C36 1.7 (6)
Ag—P—C11—C12 −59.8 (2) C32—C31—C36—C35 −0.5 (5)
C31—P—C11—C16 −68.2 (3) P—C31—C36—C35 179.6 (3)
C21—P—C11—C16 −177.8 (2) C34—C35—C36—C31 −0.2 (6)
Ag—P—C11—C16 62.2 (2) C45—N—C41—C42 −0.1 (6)
C16—C11—C12—C13 55.0 (4) Ag—N—C41—C42 −171.3 (3)
P—C11—C12—C13 176.8 (2) N—C41—C42—C43 0.5 (6)
C11—C12—C13—C14 −55.7 (5) C41—C42—C43—C44 0.0 (7)
C12—C13—C14—C15 55.5 (5) C42—C43—C44—C45 −1.0 (7)
C13—C14—C15—C16 −54.9 (5) C41—N—C45—C44 −1.0 (6)
C14—C15—C16—C11 55.2 (4) Ag—N—C45—C44 170.5 (3)
C12—C11—C16—C15 −55.1 (4) C43—C44—C45—N 1.5 (7)
P—C11—C16—C15 −177.2 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Table 2 Comparison of geometric parameters (Å, °) for selected [XAg(py)(P3)2] (X = Cl, Br or I)

X Ag—X Ag—X Ag···Ag Ag—N Ag—P X—Ag—X Ag—I—Ag
Ia 2.8186 (4) 2.9449 (5) 3.1008 (6) 2.386 (3) 2.4436 (8) 114.947 (10) 65.053 (10)
Ib 2.8402 (12) 2.8644 (8) 3.1130 (18) 2.392 (3) 2.4489 (12) 113.84 (4) 66.16 (4)
Ic 2.814 2.875 3.343 2.422 2.440 108.02 71.98
Brc 2.701 2.733 3.499 2.391 2.415 99.85 80.15
Clc 2.614 2.618 3.507 2.402 2.400 95.82 84.18

Notes: (a) This work; (b) Meijboom & Muller (2006); (c) Gotsis et al. (1989), extracted from the Cambridge Structural Database (Allen (2002), CSD CODES are VEFRUT for X = I, VEFRON for X = Br and VEFRIH for X = Cl.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2494).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750.
  3. Bowmaker, G. A., Effendy, Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2459–2465.
  4. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2004). SMART, SADABS and SAINT Bruker AXS Inc., Mdison, Wisconsin, USA.
  6. Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem.42, 907–912.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Gotsis, S., Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem.42, 923–931.
  9. Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem.102, 303–310. [DOI] [PubMed]
  10. Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev.253, 325–342.
  11. Meijboom, R. & Muller, A. (2006). Acta Cryst. E62, m3191–m3193.
  12. Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc.94, 6386–6391.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680901099X/hg2494sup1.cif

e-65-0m462-sup1.cif (21.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901099X/hg2494Isup2.hkl

e-65-0m462-Isup2.hkl (274.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES