Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):m426. doi: 10.1107/S160053680900988X

(3-Anilino-1-phenyl­imino­thio­ureato)chloridodimethyl­tin(IV)

Jorge A Delgado D a, Coco K Y A Okio a,*, Richard Welter b
PMCID: PMC2969056  PMID: 21582367

Abstract

In the title compound, [Sn(CH3)2(C13H11N4S)Cl], the Sn atom is five-coordinated in a distorted trigonal-bipyramidal geometry, with two methyl groups and one S atom in the equatorial plane, and one N atom and the Cl atom occupying the apical positions.

Related literature

For related structures, see: Labib et al. (1996). For the biological and pharmaceutical applications of organotin derivatives, see: Davies & Smith (1982); Diop et al. (2003); Okio et al. (2003).graphic file with name e-65-0m426-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)2(C13H11N4S)Cl]

  • M r = 439.53

  • Orthorhombic, Inline graphic

  • a = 11.6850 (2) Å

  • b = 14.8920 (5) Å

  • c = 20.6790 (7) Å

  • V = 3598.42 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 173 K

  • 0.10 × 0.10 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 25644 measured reflections

  • 4130 independent reflections

  • 2731 reflections with I > 2σ(I)

  • R int = 0.115

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.137

  • S = 1.09

  • 4130 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −1.84 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900988X/bx2197sup1.cif

e-65-0m426-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900988X/bx2197Isup2.hkl

e-65-0m426-Isup2.hkl (202.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The interest in the synthesis of new organotin derivatives is related to the diversity of structures that such compounds can form, and on the other side, to their biological and pharmaceutical applications (Davies & Smith, 1982,Okio et al., 2003; Diop et al., 2003). We report here the crystal structure of the title compound (I). The structure consists of discrete molecules (Fig.1).The Sn atom is five-coordinate in a distorted trigonal–bipyramidal geometry. The distorted trigonal-bipyramidal coordination polyhedron has two methyl groups and one S atom in the equatorial plane, the N1 and Cl atom occupying the apical positions. The Sn—Cl and Sn—S bond distances are shorter than the values of 2.672 (1) Å and 2.478 (2) Å found in dimethylmonochloro[(N-(2-pyridinylmethylene) hydrazinecarbothioamidato)NS(– 1)]tin(IV) hemihydrate ( Labib et al.,1996), while the Sn—N and Sn—C bonds are longer than the corresponding ones reported for the same previous compound, (2.359 (4) Å, 2.108 (7) Å and 2.105 (7) Å), as representative example.

Experimental

Compound (I) was obtained by reacting dimethyltin (IV) dichloride (220 mg, 1 mmol) with 1,5 diphenylthiocarbazone (128 mg, 0.5 mmol) in dichloromethane under reflux for 3 h. Dark red crystals suitable for X-ray analysis were grown by slow solvent evaporation.

Refinement

H atoms were positioned geometrically, with C—H distances in the range 0.95 - 0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C). H atom bonded to N4 was found in difference maps and positioned geometrically (N4-H = 0.88 Å) and was refined with a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

Crystal data

[Sn(CH3)2(C13H11N4S)Cl] F(000) = 1744
Mr = 439.53 Dx = 1.623 Mg m3
Orthorhombic, Pbna Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2b Cell parameters from 14356 reflections
a = 11.6850 (2) Å θ = 1.0–27.5°
b = 14.8920 (5) Å µ = 1.69 mm1
c = 20.6790 (7) Å T = 173 K
V = 3598.42 (18) Å3 Prism, dark red
Z = 8 0.10 × 0.10 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer 2731 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.115
graphite θmax = 27.5°, θmin = 2.0°
π scans h = −15→15
25644 measured reflections k = −18→19
4130 independent reflections l = −26→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.07P)2] where P = (Fo2 + 2Fc2)/3
4130 reflections (Δ/σ)max = 0.002
199 parameters Δρmax = 1.13 e Å3
0 restraints Δρmin = −1.84 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 0.18590 (3) 0.56103 (2) 0.509606 (17) 0.03083 (14)
Cl 0.03058 (11) 0.57242 (10) 0.59081 (6) 0.0489 (4)
S 0.30578 (10) 0.64147 (10) 0.58678 (6) 0.0440 (4)
N1 0.3690 (3) 0.5795 (2) 0.45454 (18) 0.0308 (9)
N2 0.4565 (3) 0.6110 (3) 0.48494 (17) 0.0325 (9)
N3 0.5342 (3) 0.6667 (2) 0.57432 (18) 0.0343 (9)
N4 0.5270 (3) 0.6917 (2) 0.63558 (19) 0.0364 (9)
H4N 0.4606 0.6889 0.6556 0.044*
C1 0.3037 (4) 0.5110 (3) 0.3553 (2) 0.0368 (11)
H1 0.2316 0.5011 0.3754 0.044*
C2 0.3220 (4) 0.4841 (3) 0.2918 (3) 0.0444 (13)
H2 0.2620 0.4559 0.2683 0.053*
C3 0.4263 (5) 0.4979 (3) 0.2626 (2) 0.0516 (14)
H3 0.4380 0.4797 0.2191 0.062*
C4 0.5137 (5) 0.5383 (4) 0.2966 (3) 0.0484 (14)
H4 0.5856 0.5474 0.2761 0.058*
C5 0.4985 (4) 0.5659 (3) 0.3598 (2) 0.0364 (11)
H5 0.5595 0.5934 0.3829 0.044*
C6 0.3923 (4) 0.5527 (3) 0.3896 (2) 0.0316 (10)
C7 0.6144 (4) 0.7333 (3) 0.7357 (2) 0.0423 (13)
H7 0.5451 0.7188 0.7573 0.051*
C8 0.7073 (5) 0.7652 (3) 0.7698 (3) 0.0474 (14)
H8 0.7011 0.7735 0.8152 0.057*
C9 0.8086 (4) 0.7852 (4) 0.7392 (3) 0.0503 (14)
H9 0.8718 0.8075 0.7633 0.060*
C10 0.8178 (4) 0.7729 (4) 0.6738 (3) 0.0518 (15)
H10 0.8884 0.7856 0.6529 0.062*
C11 0.7263 (5) 0.7424 (3) 0.6376 (3) 0.0425 (13)
H11 0.7330 0.7351 0.5921 0.051*
C12 0.6243 (4) 0.7226 (3) 0.6692 (2) 0.0342 (11)
C13 0.4384 (4) 0.6391 (3) 0.5470 (2) 0.0329 (10)
C14 0.2130 (5) 0.4204 (4) 0.5157 (3) 0.0438 (14)
H14A 0.1517 0.3890 0.4926 0.066*
H14B 0.2129 0.4019 0.5612 0.066*
H14C 0.2869 0.4053 0.4961 0.066*
C15 0.1051 (3) 0.6462 (3) 0.4410 (2) 0.0374 (11)
H15A 0.0860 0.6115 0.4022 0.056*
H15B 0.1572 0.6952 0.4293 0.056*
H15C 0.0350 0.6712 0.4598 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.0292 (2) 0.0351 (2) 0.0282 (2) 0.00016 (13) −0.00196 (12) 0.00342 (13)
Cl 0.0390 (7) 0.0750 (10) 0.0326 (7) 0.0030 (6) 0.0051 (5) 0.0065 (6)
S 0.0344 (6) 0.0634 (9) 0.0342 (8) 0.0036 (6) −0.0021 (5) −0.0164 (6)
N1 0.033 (2) 0.029 (2) 0.031 (2) −0.0025 (16) −0.0031 (17) 0.0010 (16)
N2 0.035 (2) 0.030 (2) 0.032 (2) −0.0017 (18) −0.0044 (17) −0.0016 (17)
N3 0.037 (2) 0.033 (2) 0.033 (2) −0.0034 (16) −0.0054 (17) −0.0021 (18)
N4 0.039 (2) 0.037 (2) 0.034 (2) 0.0020 (18) −0.0062 (17) −0.0077 (18)
C1 0.044 (3) 0.035 (3) 0.032 (3) 0.002 (2) −0.007 (2) −0.001 (2)
C2 0.069 (4) 0.031 (3) 0.033 (3) 0.008 (3) −0.017 (3) −0.006 (2)
C3 0.082 (4) 0.042 (3) 0.031 (3) 0.013 (3) 0.000 (3) −0.001 (2)
C4 0.066 (3) 0.043 (3) 0.036 (3) 0.011 (3) 0.018 (3) 0.006 (2)
C5 0.043 (3) 0.033 (3) 0.033 (3) 0.002 (2) 0.005 (2) 0.002 (2)
C6 0.040 (2) 0.027 (3) 0.028 (3) 0.0068 (19) −0.002 (2) 0.0025 (19)
C7 0.045 (3) 0.046 (3) 0.036 (3) 0.012 (2) −0.007 (2) −0.009 (2)
C8 0.061 (3) 0.041 (3) 0.040 (3) 0.019 (2) −0.021 (3) −0.012 (2)
C9 0.050 (3) 0.041 (3) 0.060 (4) −0.001 (3) −0.024 (3) −0.007 (3)
C10 0.048 (3) 0.048 (3) 0.060 (4) −0.018 (2) −0.013 (3) 0.006 (3)
C11 0.049 (3) 0.038 (3) 0.040 (3) −0.007 (2) −0.012 (2) 0.005 (2)
C12 0.037 (3) 0.025 (2) 0.040 (3) 0.004 (2) −0.010 (2) −0.004 (2)
C13 0.035 (2) 0.032 (3) 0.032 (3) 0.000 (2) −0.004 (2) −0.004 (2)
C14 0.042 (3) 0.037 (3) 0.052 (4) 0.003 (2) −0.002 (2) 0.010 (2)
C15 0.036 (2) 0.038 (3) 0.038 (3) 0.000 (2) −0.003 (2) 0.006 (2)

Geometric parameters (Å, °)

Sn—C14 2.122 (5) C4—H4 0.9500
Sn—C15 2.125 (5) C5—C6 1.399 (6)
Sn—S 2.4380 (13) C5—H5 0.9500
Sn—N1 2.439 (4) C7—C8 1.379 (7)
Sn—Cl 2.4784 (13) C7—C12 1.388 (7)
S—C13 1.755 (4) C7—H7 0.9500
N1—N2 1.289 (5) C8—C9 1.375 (8)
N1—C6 1.428 (6) C8—H8 0.9500
N2—C13 1.366 (6) C9—C10 1.370 (8)
N3—C13 1.320 (5) C9—H9 0.9500
N3—N4 1.323 (5) C10—C11 1.382 (7)
N4—C12 1.410 (6) C10—H10 0.9500
N4—H4N 0.8800 C11—C12 1.392 (7)
C1—C2 1.390 (7) C11—H11 0.9500
C1—C6 1.400 (6) C14—H14A 0.9800
C1—H1 0.9500 C14—H14B 0.9800
C2—C3 1.375 (7) C14—H14C 0.9800
C2—H2 0.9500 C15—H15A 0.9800
C3—C4 1.377 (7) C15—H15B 0.9800
C3—H3 0.9500 C15—H15C 0.9800
C4—C5 1.383 (7)
C14—Sn—C15 134.0 (2) C5—C6—N1 122.9 (4)
C14—Sn—S 111.14 (15) C1—C6—N1 117.3 (4)
C15—Sn—S 113.52 (14) C8—C7—C12 118.8 (5)
C14—Sn—N1 90.45 (17) C8—C7—H7 120.6
C15—Sn—N1 90.60 (14) C12—C7—H7 120.6
S—Sn—N1 75.30 (9) C9—C8—C7 121.1 (5)
C14—Sn—Cl 97.86 (15) C9—C8—H8 119.4
C15—Sn—Cl 94.95 (13) C7—C8—H8 119.4
S—Sn—Cl 86.77 (4) C10—C9—C8 119.5 (5)
N1—Sn—Cl 161.98 (9) C10—C9—H9 120.2
C13—S—Sn 100.99 (16) C8—C9—H9 120.2
N2—N1—C6 114.2 (4) C9—C10—C11 121.3 (5)
N2—N1—Sn 120.6 (3) C9—C10—H10 119.4
C6—N1—Sn 125.1 (3) C11—C10—H10 119.4
N1—N2—C13 116.6 (4) C10—C11—C12 118.5 (5)
C13—N3—N4 116.3 (4) C10—C11—H11 120.7
N3—N4—C12 120.8 (4) C12—C11—H11 120.7
N3—N4—H4N 119.6 C7—C12—C11 120.8 (4)
C12—N4—H4N 119.6 C7—C12—N4 117.3 (4)
C2—C1—C6 119.5 (4) C11—C12—N4 121.9 (4)
C2—C1—H1 120.3 N3—C13—N2 111.5 (4)
C6—C1—H1 120.3 N3—C13—S 122.8 (4)
C3—C2—C1 120.5 (5) N2—C13—S 125.7 (3)
C3—C2—H2 119.7 Sn—C14—H14A 109.5
C1—C2—H2 119.7 Sn—C14—H14B 109.5
C2—C3—C4 120.0 (5) H14A—C14—H14B 109.5
C2—C3—H3 120.0 Sn—C14—H14C 109.5
C4—C3—H3 120.0 H14A—C14—H14C 109.5
C3—C4—C5 121.1 (5) H14B—C14—H14C 109.5
C3—C4—H4 119.4 Sn—C15—H15A 109.5
C5—C4—H4 119.4 Sn—C15—H15B 109.5
C4—C5—C6 119.2 (5) H15A—C15—H15B 109.5
C4—C5—H5 120.4 Sn—C15—H15C 109.5
C6—C5—H5 120.4 H15A—C15—H15C 109.5
C5—C6—C1 119.8 (4) H15B—C15—H15C 109.5
C14—Sn—S—C13 77.8 (2) C2—C1—C6—N1 179.6 (4)
C15—Sn—S—C13 −91.0 (2) N2—N1—C6—C5 −4.7 (6)
N1—Sn—S—C13 −6.86 (18) Sn—N1—C6—C5 179.1 (3)
Cl—Sn—S—C13 175.02 (17) N2—N1—C6—C1 174.9 (4)
C14—Sn—N1—N2 −104.0 (3) Sn—N1—C6—C1 −1.3 (5)
C15—Sn—N1—N2 121.9 (3) C12—C7—C8—C9 −0.8 (7)
S—Sn—N1—N2 7.7 (3) C7—C8—C9—C10 −0.3 (8)
Cl—Sn—N1—N2 13.8 (5) C8—C9—C10—C11 1.3 (9)
C14—Sn—N1—C6 71.9 (3) C9—C10—C11—C12 −1.2 (8)
C15—Sn—N1—C6 −62.1 (3) C8—C7—C12—C11 1.0 (7)
S—Sn—N1—C6 −176.3 (3) C8—C7—C12—N4 −178.6 (4)
Cl—Sn—N1—C6 −170.2 (2) C10—C11—C12—C7 0.0 (7)
C6—N1—N2—C13 179.0 (4) C10—C11—C12—N4 179.6 (5)
Sn—N1—N2—C13 −4.6 (5) N3—N4—C12—C7 −169.6 (4)
C13—N3—N4—C12 −179.8 (4) N3—N4—C12—C11 10.9 (7)
C6—C1—C2—C3 0.2 (7) N4—N3—C13—N2 −177.1 (4)
C1—C2—C3—C4 0.3 (8) N4—N3—C13—S 4.1 (6)
C2—C3—C4—C5 −0.3 (8) N1—N2—C13—N3 177.5 (4)
C3—C4—C5—C6 −0.3 (7) N1—N2—C13—S −3.8 (6)
C4—C5—C6—C1 0.8 (7) Sn—S—C13—N3 −172.3 (4)
C4—C5—C6—N1 −179.6 (4) Sn—S—C13—N2 9.1 (4)
C2—C1—C6—C5 −0.8 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2197).

References

  1. Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519–616. New York: Pergamon Press.
  2. Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem.17, 881-882.
  3. Labib, L., Khalil, T. E., Iskander, M. F. & Refaar, L. S. (1996). Polyhedron, 15, 349-357.
  4. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  5. Okio, K. Y. A., Diop, L., Barry, A. H., Jouini, T. & Ortega, S. H. (2003). Appl. Organomet. Chem 17, 317-318.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900988X/bx2197sup1.cif

e-65-0m426-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900988X/bx2197Isup2.hkl

e-65-0m426-Isup2.hkl (202.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES