Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 11;65(Pt 4):m391. doi: 10.1107/S1600536809007971

Bis(η5-penta­methyl­cyclo­penta­dien­yl)cobalt(II)

Meghan M Clark a, William W Brennessel a,*, Patrick L Holland a
PMCID: PMC2969061  PMID: 21582340

Abstract

The crystal structure of the title compound, deca­methyl­cobaltocene, [Co(C10H15)2], has been determined. High-quality single crystals were grown from a cold saturated hexa­methyl­disiloxane solution. The structure is related to the manganese and iron analogs. The molecule has D 5d symmetry, with the Co atom in a crystallographic 2/m position. The cobalt–centroid(C5) distance is 1.71Å and the centroid(C5)–Co–centroid(C5) angle is 180°, by symmetry.

Related literature

For the synthesis of the title compound and its electrochemical and magnetic properties, see: Robbins et al. (1982). For its formal potential and use as a reducing agent, see: Connelly & Geiger (1996). For the isotypic manganese and iron structures, see: Struchkov et al. (1978); Freyburg et al. (1979); Augart et al. (1991); Arrais et al. (2003).graphic file with name e-65-0m391-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H15)2]

  • M r = 329.37

  • Orthorhombic, Inline graphic

  • a = 15.0848 (16) Å

  • b = 11.5031 (12) Å

  • c = 10.0105 (10) Å

  • V = 1737.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.28 × 0.28 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.771, T max = 0.875

  • 19672 measured reflections

  • 2386 independent reflections

  • 1903 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.089

  • S = 1.07

  • 2386 reflections

  • 84 parameters

  • All H-atom parameters refined

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: SHELXTL (Sheldrick, 2008b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007971/sj2590sup1.cif

e-65-0m391-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007971/sj2590Isup2.hkl

e-65-0m391-Isup2.hkl (117.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—C1 2.0914 (12)
Co1—C3 2.0956 (8)
Co1—C2 2.1113 (8)
C1—C2 1.4304 (12)
C1—C4 1.4961 (18)
C2—C3 1.4231 (12)
C2—C5 1.4935 (14)
C3—C6 1.4950 (13)

supplementary crystallographic information

Comment

The structure of (I) has been conspicuously absent from the literature, despite its being a widely used reducing agent (Connelly & Geiger, 1996). Robbins and co-workers referred to a structural determination in 1982 (Robbins et al., 1982), specifically its D5d symmetry and its similarity to the manganese analog. However, no structural data were presented. Attempts to grow single crystals from toluene and hexane, the latter from which Robbins reported having grown crystals, resulted in very poor quality specimens that were unsuitable for X-ray diffraction experiments. A cold (-38 ° C) saturated hexamethyldisiloxane solution of (I) afforded excellent crystals that resulted in a high quality structural determination.

The structure is isomorphous to that of decamethylferrocene (refcodes DMFERR, Struchkov et al., 1978, DMFERR01, Freyburg et al., 1979, DMFERR02, Arrais et al., 2003) and the low temperature polymorph of decamethylmanganocene (refcodes DMCPMN01 and DMCPMN02, Augart et al., 1991), for which the metal atoms are in crystallographic 2/m positions.

Experimental

All operations were performed under an inert atmosphere (dinitrogen). Hexamethyldisiloxane was stirred over CaH2 and vacuum transferred from sodium benzophenone ketyl. (I) was purchased from Sigma-Aldrich and used as is. Hexamethyldisiloxane (1 ml) was added to (I) (10 mg, 30 µmol), most of which dissolved over the course of a few hours at room temperature. After filtration through Celite, the filtrate was stored at -38 °C, resulting in dark yellow-brown crystals of (I) after a few hours.

Refinement

Hydrogen atoms were found from the difference Fourier map and refined independently from their respective carbon atoms with individual isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

A displacement ellipsoid (50% probability) drawing of (I). The cobalt atom is in a crystallographic 2/m position.

Crystal data

[Co(C10H15)2] F(000) = 708
Mr = 329.37 Dx = 1.259 Mg m3
Orthorhombic, Cmca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2 Cell parameters from 4000 reflections
a = 15.0848 (16) Å θ = 3.0–37.5°
b = 11.5031 (12) Å µ = 0.98 mm1
c = 10.0105 (10) Å T = 100 K
V = 1737.0 (3) Å3 Block, dark yellow-brown
Z = 4 0.28 × 0.28 × 0.14 mm

Data collection

Bruker APEXII CCD diffractometer 2386 independent reflections
Radiation source: fine-focus sealed tube 1903 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 38.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −25→25
Tmin = 0.771, Tmax = 0.875 k = −19→19
19672 measured reflections l = −16→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2743P] where P = (Fo2 + 2Fc2)/3
2386 reflections (Δ/σ)max < 0.001
84 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.74 e Å3

Special details

Experimental. The crystal was examined under N2 and affixed to the end of a glass capillary with viscous oil, which protected the crystal during transfer to the cold stream.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.0000 0.0000 0.0000 0.01533 (7)
C1 0.0000 −0.17732 (10) 0.04617 (12) 0.0228 (2)
C2 −0.07677 (6) −0.12416 (7) 0.10364 (8) 0.02149 (15)
C3 −0.04749 (5) −0.03551 (7) 0.19244 (8) 0.01843 (13)
C4 0.0000 −0.27361 (12) −0.05429 (14) 0.0348 (3)
H4A 0.0000 −0.352 (3) −0.013 (2) 0.045 (8)*
H4B −0.0486 (10) −0.2711 (18) −0.1133 (16) 0.063 (5)*
C5 −0.17089 (8) −0.15651 (11) 0.07606 (12) 0.0340 (2)
H5A −0.1798 (16) −0.184 (2) −0.0134 (18) 0.053 (6)*
H5B −0.2119 (12) −0.0926 (16) 0.0778 (19) 0.059 (5)*
H5C −0.1896 (11) −0.2189 (15) 0.1358 (16) 0.047 (4)*
C6 −0.10544 (7) 0.04079 (10) 0.27607 (9) 0.02731 (18)
H6A −0.1134 (15) 0.0057 (13) 0.360 (3) 0.045 (6)*
H6B −0.1638 (11) 0.0562 (13) 0.2287 (15) 0.039 (4)*
H6C −0.0774 (11) 0.1158 (14) 0.2912 (14) 0.037 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.01811 (10) 0.01380 (9) 0.01409 (9) 0.000 0.000 −0.00032 (6)
C1 0.0353 (6) 0.0161 (4) 0.0170 (4) 0.000 0.000 −0.0004 (4)
C2 0.0245 (3) 0.0202 (3) 0.0198 (3) −0.0054 (3) −0.0013 (3) 0.0016 (3)
C3 0.0205 (3) 0.0180 (3) 0.0168 (3) 0.0002 (3) 0.0014 (2) 0.0006 (2)
C4 0.0653 (11) 0.0183 (5) 0.0206 (5) 0.000 0.000 −0.0029 (4)
C5 0.0290 (4) 0.0371 (5) 0.0359 (5) −0.0147 (4) −0.0069 (4) 0.0063 (4)
C6 0.0293 (4) 0.0292 (4) 0.0234 (4) 0.0056 (4) 0.0068 (3) −0.0005 (3)

Geometric parameters (Å, °)

Co1—C1i 2.0914 (12) C2—C3 1.4231 (12)
Co1—C1 2.0914 (12) C2—C5 1.4935 (14)
Co1—C3ii 2.0955 (8) C3—C3ii 1.4328 (17)
Co1—C3 2.0956 (8) C3—C6 1.4950 (13)
Co1—C3i 2.0956 (8) C4—H4A 0.99 (3)
Co1—C3iii 2.0956 (8) C4—H4B 0.942 (16)
Co1—C2iii 2.1113 (8) C5—H5A 0.960 (18)
Co1—C2 2.1113 (8) C5—H5B 0.962 (18)
Co1—C2ii 2.1113 (8) C5—H5C 0.976 (17)
Co1—C2i 2.1113 (8) C6—H6A 0.94 (2)
C1—C2 1.4304 (12) C6—H6B 1.016 (16)
C1—C2ii 1.4304 (12) C6—H6C 0.973 (16)
C1—C4 1.4961 (18)
C1i—Co1—C1 180.0 C3—Co1—C2i 140.46 (3)
C1i—Co1—C3ii 113.16 (4) C3i—Co1—C2i 39.54 (3)
C1—Co1—C3ii 66.84 (4) C3iii—Co1—C2i 66.67 (3)
C1i—Co1—C3 113.16 (4) C2iii—Co1—C2i 66.53 (5)
C1—Co1—C3 66.84 (4) C2—Co1—C2i 180.0
C3ii—Co1—C3 39.98 (5) C2ii—Co1—C2i 113.47 (5)
C1i—Co1—C3i 66.84 (4) C2—C1—C2ii 108.12 (10)
C1—Co1—C3i 113.16 (4) C2—C1—C4 125.94 (5)
C3ii—Co1—C3i 140.02 (5) C2ii—C1—C4 125.93 (5)
C3—Co1—C3i 180.0 C2—C1—Co1 70.85 (6)
C1i—Co1—C3iii 66.84 (4) C2ii—C1—Co1 70.85 (6)
C1—Co1—C3iii 113.16 (4) C4—C1—Co1 124.99 (9)
C3ii—Co1—C3iii 180.0 C3—C2—C1 107.84 (8)
C3—Co1—C3iii 140.02 (5) C3—C2—C5 126.09 (9)
C3i—Co1—C3iii 39.98 (5) C1—C2—C5 126.07 (9)
C1i—Co1—C2iii 39.79 (3) C3—C2—Co1 69.63 (5)
C1—Co1—C2iii 140.21 (3) C1—C2—Co1 69.36 (6)
C3ii—Co1—C2iii 140.46 (3) C5—C2—Co1 126.81 (7)
C3—Co1—C2iii 113.34 (3) C2—C3—C3ii 108.08 (5)
C3i—Co1—C2iii 66.66 (3) C2—C3—C6 126.09 (8)
C3iii—Co1—C2iii 39.54 (3) C3ii—C3—C6 125.78 (5)
C1i—Co1—C2 140.21 (3) C2—C3—Co1 70.82 (5)
C1—Co1—C2 39.79 (3) C3ii—C3—Co1 70.01 (2)
C3ii—Co1—C2 66.67 (3) C6—C3—Co1 126.88 (6)
C3—Co1—C2 39.54 (3) C1—C4—H4A 112.8 (13)
C3i—Co1—C2 140.46 (3) C1—C4—H4B 113.5 (11)
C3iii—Co1—C2 113.33 (3) H4A—C4—H4B 107.0 (15)
C2iii—Co1—C2 113.47 (5) C2—C5—H5A 112.8 (15)
C1i—Co1—C2ii 140.21 (3) C2—C5—H5B 114.7 (11)
C1—Co1—C2ii 39.79 (3) H5A—C5—H5B 100.5 (18)
C3ii—Co1—C2ii 39.54 (3) C2—C5—H5C 110.1 (9)
C3—Co1—C2ii 66.67 (3) H5A—C5—H5C 106.7 (16)
C3i—Co1—C2ii 113.33 (3) H5B—C5—H5C 111.4 (14)
C3iii—Co1—C2ii 140.46 (3) C3—C6—H6A 109.0 (11)
C2iii—Co1—C2ii 180.0 C3—C6—H6B 110.4 (9)
C2—Co1—C2ii 66.53 (5) H6A—C6—H6B 112.4 (16)
C1i—Co1—C2i 39.79 (3) C3—C6—H6C 110.7 (9)
C1—Co1—C2i 140.21 (3) H6A—C6—H6C 107.2 (15)
C3ii—Co1—C2i 113.33 (3) H6B—C6—H6C 107.2 (13)
C1i—Co1—C1—C2 22.38 (12) C2iii—Co1—C2—C1 141.96 (6)
C3ii—Co1—C1—C2 80.81 (6) C2ii—Co1—C2—C1 −38.04 (6)
C3—Co1—C1—C2 37.16 (5) C2i—Co1—C2—C1 −59.99 (6)
C3i—Co1—C1—C2 −142.84 (5) C1i—Co1—C2—C5 59.74 (11)
C3iii—Co1—C1—C2 −99.18 (6) C1—Co1—C2—C5 −120.26 (11)
C2iii—Co1—C1—C2 −62.03 (10) C3ii—Co1—C2—C5 158.44 (10)
C2ii—Co1—C1—C2 117.97 (10) C3—Co1—C2—C5 120.46 (11)
C2i—Co1—C1—C2 180.0 C3i—Co1—C2—C5 −59.54 (11)
C1i—Co1—C1—C2ii −95.59 (13) C3iii—Co1—C2—C5 −21.56 (10)
C3ii—Co1—C1—C2ii −37.16 (5) C2iii—Co1—C2—C5 21.70 (8)
C3—Co1—C1—C2ii −80.82 (6) C2ii—Co1—C2—C5 −158.30 (8)
C3i—Co1—C1—C2ii 99.18 (6) C2i—Co1—C2—C5 179.75 (9)
C3iii—Co1—C1—C2ii 142.84 (5) C1—C2—C3—C3ii −1.34 (8)
C2iii—Co1—C1—C2ii 180.0 C5—C2—C3—C3ii 178.27 (8)
C2—Co1—C1—C2ii −117.97 (10) Co1—C2—C3—C3ii −60.38 (2)
C2i—Co1—C1—C2ii 62.03 (10) C1—C2—C3—C6 −178.77 (9)
C1i—Co1—C1—C4 143.40 (12) C5—C2—C3—C6 0.85 (14)
C3ii—Co1—C1—C4 −158.17 (3) Co1—C2—C3—C6 122.20 (9)
C3—Co1—C1—C4 158.17 (3) C1—C2—C3—Co1 59.04 (7)
C3i—Co1—C1—C4 −21.83 (3) C5—C2—C3—Co1 −121.35 (9)
C3iii—Co1—C1—C4 21.83 (3) C1i—Co1—C3—C2 142.61 (5)
C2iii—Co1—C1—C4 58.98 (5) C1—Co1—C3—C2 −37.39 (5)
C2—Co1—C1—C4 121.01 (5) C3ii—Co1—C3—C2 −118.44 (5)
C2ii—Co1—C1—C4 −121.01 (5) C3i—Co1—C3—C2 −112.12 (6)
C2i—Co1—C1—C4 −58.99 (5) C3iii—Co1—C3—C2 61.56 (5)
C2ii—C1—C2—C3 2.17 (13) C2iii—Co1—C3—C2 99.14 (7)
C4—C1—C2—C3 −179.08 (11) C2ii—Co1—C3—C2 −80.87 (7)
Co1—C1—C2—C3 −59.21 (6) C2i—Co1—C3—C2 180.0
C2ii—C1—C2—C5 −177.44 (7) C1i—Co1—C3—C3ii −98.952 (19)
C4—C1—C2—C5 1.30 (17) C1—Co1—C3—C3ii 81.049 (19)
Co1—C1—C2—C5 121.18 (9) C3i—Co1—C3—C3ii 6.32 (2)
C2ii—C1—C2—Co1 61.38 (8) C3iii—Co1—C3—C3ii 180.0
C4—C1—C2—Co1 −119.87 (12) C2iii—Co1—C3—C3ii −142.43 (3)
C1i—Co1—C2—C3 −60.72 (8) C2—Co1—C3—C3ii 118.44 (5)
C1—Co1—C2—C3 119.28 (8) C2ii—Co1—C3—C3ii 37.57 (3)
C3ii—Co1—C2—C3 37.98 (5) C2i—Co1—C3—C3ii −61.56 (5)
C3i—Co1—C2—C3 180.0 C1i—Co1—C3—C6 21.37 (9)
C3iii—Co1—C2—C3 −142.02 (5) C1—Co1—C3—C6 −158.63 (9)
C2iii—Co1—C2—C3 −98.77 (5) C3ii—Co1—C3—C6 120.32 (8)
C2ii—Co1—C2—C3 81.24 (5) C3i—Co1—C3—C6 126.64 (8)
C2i—Co1—C2—C3 59.29 (5) C3iii—Co1—C3—C6 −59.68 (8)
C1i—Co1—C2—C1 180.0 C2iii—Co1—C3—C6 −22.11 (9)
C3ii—Co1—C2—C1 −81.30 (6) C2—Co1—C3—C6 −121.24 (10)
C3—Co1—C2—C1 −119.28 (8) C2ii—Co1—C3—C6 157.89 (9)
C3i—Co1—C2—C1 60.72 (8) C2i—Co1—C3—C6 58.76 (10)
C3iii—Co1—C2—C1 98.70 (6)

Symmetry codes: (i) −x, −y, −z; (ii) −x, y, z; (iii) x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2590).

References

  1. Arrais, A., Diana, E., Gobetto, R., Milanesio, M., Viterbo, D. & Stanghellini, P. L. (2003). Eur. J. Inorg. Chem. pp. 1186–1192.
  2. Augart, N., Boese, R. & Schmid, G. (1991). Z. Anorg. Allg. Chem.595, 27–34.
  3. Bruker (2008). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2009). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Connelly, N. G. & Geiger, W. E. (1996). Chem. Rev.96, 877–910. [DOI] [PubMed]
  6. Freyburg, D. P., Robbins, J. L., Raymond, K. N. & Smart, J. C. (1979). J. Am. Chem. Soc.101, 892–897.
  7. Robbins, J. L., Edelstein, N., Spencer, B. & Smart, J. C. (1982). J. Am. Chem. Soc.104, 1882–1893.
  8. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Struchkov, Yu. T., Andrianov, V. G., Sal’nikova, T. N., Lyatifov, I. R. & Materikova, R. B. (1978). J. Organomet. Chem.145, 213–223.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007971/sj2590sup1.cif

e-65-0m391-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007971/sj2590Isup2.hkl

e-65-0m391-Isup2.hkl (117.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES