Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):m429–m430. doi: 10.1107/S1600536809009489

Poly[octa-μ-aqua-tetra­aqua­bis(μ4-5-sulfonatobenzene-1,3-dicarboxyl­ato)nickel(II)tetra­sodium]

Bing-Yu Zhang a, Jing-Jing Nie a, Duan-Jun Xu a,*
PMCID: PMC2969070  PMID: 21582369

Abstract

In the crystal structure of the title compound, [Na4Ni(C8H3O7S)2(H2O)12]n, the NiII cation occupies an inversion centre and is coordinated by the carboxyl groups of the sulfoisophthalate trianions and water mol­ecules in a distorted octa­hedral geometry. Two independent NaI atoms are connected by the carboxyl and sulfonate groups of the sulfoisophthalate ligands anions and water mol­ecules in a distorted octa­hedral geometry. The sulfoisophthalate ligands and coordinated water mol­ecules bridge the NiII and NaI cations, forming a three-dimensional polymeric structure. Weak π–π stacking is present between parallel benzene rings [centroid–centroid distance = 3.9349 (10) Å]. Extensive O—H⋯O and C—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Su & Xu (2004); Pan et al. (2006). For the isotypic structure of the Co analogue, see: Zhang et al. (2009).graphic file with name e-65-0m429-scheme1.jpg

Experimental

Crystal data

  • [Na4Ni(C8H3O7S)2(H2O)12]

  • M r = 853.19

  • Monoclinic, Inline graphic

  • a = 7.8770 (9) Å

  • b = 17.229 (2) Å

  • c = 11.7474 (13) Å

  • β = 93.292 (4)°

  • V = 1591.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 295 K

  • 0.30 × 0.22 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.770, T max = 0.835

  • 17574 measured reflections

  • 3107 independent reflections

  • 2866 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.071

  • S = 1.08

  • 3107 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009489/ng2561sup1.cif

e-65-0m429-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009489/ng2561Isup2.hkl

e-65-0m429-Isup2.hkl (149.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni—O1 2.0252 (11)
Ni—O8 2.0731 (14)
Ni—O9 2.0727 (11)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O13i 0.84 2.03 2.861 (2) 173
O8—H8B⋯O4ii 0.85 1.99 2.8130 (19) 162
O9—H9A⋯O7iii 0.85 2.16 2.9854 (17) 163
O9—H9B⋯O2 0.84 1.82 2.6168 (17) 159
O10—H10A⋯O7ii 0.83 2.04 2.8553 (19) 167
O10—H10B⋯O3iv 0.85 1.83 2.6615 (19) 165
O11—H11A⋯O7iii 0.89 1.90 2.7659 (18) 167
O11—H11B⋯O3iv 0.87 1.92 2.783 (2) 175
O12—H12A⋯O1v 0.84 2.11 2.9470 (18) 173
O12—H12B⋯O4vi 0.89 2.04 2.8994 (19) 163
O13—H13A⋯O4ii 0.84 1.94 2.733 (2) 157
O13—H13B⋯O6vii 0.88 2.21 2.9486 (19) 141
C7—H7⋯O11viii 0.93 2.50 3.371 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

As a part of investigation on π-π stacking between aromatic rings (Su & Xu, 2004; Pan et al., 2006), the title NiII compound has recently been prepared in our laboratory, and its crystal structure is reported here.

A part of the three dimensional polymeric structure of the title compound is shown in Fig. 1. The NiII compound is isomorphous with the CoII compound (Zhang et al., 2009). The Ni atom occupies a special position in an inversion centre and assumes a distorted NiO6 octahedral geometry, The Ni—O bond distances (Table 1) are about 0.03 Å shorter than corresponding Co—O bond distances found in the isomorphous CoII compound. Both crystallograohically indenpendent NaI atoms are in distorted octahedral coordination geometry. The sulfoisophthalate trianions and water molecules bridge the metal atoms to form the polymeric structure.

The extensive O—H···O hydrogen bonding network presents in the crystal structue (Table 2), weak C—H···O hydrogen bonding also helps to stabilize the crystal structure. The distance between parallel the C2-benzne plane and C2v-benzene plane is 3.551 (9) Å [symmetry code: (v) 1 - x, 1 - y, -z], and the centroids distance between the benzene rings is 3.9349 (10) Å. These findings suggest a weak π-π stacking involving sulfoisophthlate ligand.

Experimental

A water-ethanol solution (25 ml, 3:2) containing monosodium 5-sulfoisophthalate (0.270 g, 1 mmol), Na2CO3 (0.212 g, 2 mmol) and NiCl2.6H2O (0.600 g, 2.5 mmol) was refluxed for 8 h and filtered after cooling to room temperature. The single crystals of the title compound were obtained from the filtrate after 3 weeks.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions, with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A part of the polymeric structure of the title compound with 50% probability displacement (arbitrary spheres for H atoms) [symmetry codes: (i) -x + 3/2,+y - 1/2,-z + 1/2; (ii) -x + 1/2,+y - 1/2,-z + 1/2; (iii) -x + 1,-y + 1,-z + 1; (iv) x - 1/2,-y + 1/2,+z - 1/2; (v) -x + 1,-y + 1,-z].

Crystal data

[Na4Ni(C8H3O7S)2(H2O)12] F(000) = 876
Mr = 853.19 Dx = 1.780 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2356 reflections
a = 7.8770 (9) Å θ = 2.5–25.0°
b = 17.229 (2) Å µ = 0.90 mm1
c = 11.7474 (13) Å T = 295 K
β = 93.292 (4)° Prism, green
V = 1591.7 (3) Å3 0.30 × 0.22 × 0.20 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer 3107 independent reflections
Radiation source: fine-focus sealed tube 2866 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 10.0 pixels mm-1 θmax = 26.0°, θmin = 2.1°
ω scans h = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −21→21
Tmin = 0.770, Tmax = 0.835 l = −14→14
17574 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.7337P] where P = (Fo2 + 2Fc2)/3
3107 reflections (Δ/σ)max = 0.001
223 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 0.5000 0.5000 0.5000 0.01887 (10)
Na1 0.82068 (9) 0.33240 (4) 0.45637 (6) 0.02989 (18)
Na2 0.40578 (9) 0.26823 (4) 0.20100 (6) 0.02845 (17)
S 0.28801 (5) 0.73027 (2) 0.01772 (3) 0.01908 (11)
O1 0.42320 (16) 0.52266 (7) 0.33588 (10) 0.0244 (3)
O2 0.42591 (19) 0.40594 (7) 0.25407 (10) 0.0335 (3)
O3 0.1627 (2) 0.37896 (8) −0.12900 (12) 0.0456 (4)
O4 0.11757 (18) 0.47912 (8) −0.24403 (11) 0.0332 (3)
O5 0.45777 (16) 0.74769 (7) −0.01724 (11) 0.0279 (3)
O6 0.25488 (18) 0.76128 (7) 0.12908 (10) 0.0291 (3)
O7 0.15727 (16) 0.75328 (7) −0.06942 (11) 0.0267 (3)
O8 0.75086 (17) 0.51710 (9) 0.46157 (11) 0.0362 (3)
H8A 0.8191 0.5403 0.5074 0.054*
H8B 0.7789 0.5274 0.3941 0.054*
O9 0.53288 (16) 0.38303 (6) 0.46643 (10) 0.0238 (3)
H9A 0.4645 0.3534 0.4997 0.036*
H9B 0.5021 0.3785 0.3975 0.036*
O10 0.70115 (18) 0.26289 (7) 0.28653 (11) 0.0336 (3)
H10A 0.7540 0.2629 0.2277 0.050*
H10B 0.6997 0.2152 0.3041 0.050*
O11 0.68483 (16) 0.21970 (8) 0.55884 (12) 0.0327 (3)
H11A 0.5764 0.2266 0.5724 0.049*
H11B 0.6788 0.1866 0.5033 0.049*
O12 0.87077 (17) 0.37265 (7) 0.65035 (11) 0.0312 (3)
H12A 0.7926 0.4047 0.6585 0.047*
H12B 0.9552 0.3964 0.6897 0.047*
O13 1.03972 (18) 0.40442 (8) 0.36780 (12) 0.0354 (3)
H13A 1.0040 0.4338 0.3148 0.053*
H13B 1.1122 0.3726 0.3378 0.053*
C1 0.4055 (2) 0.47741 (9) 0.25112 (14) 0.0205 (3)
C2 0.3474 (2) 0.51522 (9) 0.13980 (14) 0.0211 (3)
C3 0.3448 (2) 0.59532 (9) 0.12908 (13) 0.0210 (3)
H3 0.3862 0.6266 0.1889 0.025*
C4 0.2800 (2) 0.62800 (9) 0.02841 (14) 0.0187 (3)
C5 0.2204 (2) 0.58282 (9) −0.06300 (14) 0.0218 (3)
H5 0.1774 0.6060 −0.1301 0.026*
C6 0.2258 (2) 0.50242 (9) −0.05294 (14) 0.0224 (4)
C7 0.2909 (2) 0.46959 (10) 0.04849 (14) 0.0244 (4)
H7 0.2966 0.4159 0.0551 0.029*
C8 0.1644 (2) 0.44968 (10) −0.15014 (14) 0.0240 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.02441 (18) 0.01777 (16) 0.01396 (16) 0.00201 (11) −0.00293 (12) −0.00019 (10)
Na1 0.0270 (4) 0.0368 (4) 0.0256 (4) 0.0015 (3) −0.0011 (3) 0.0022 (3)
Na2 0.0305 (4) 0.0314 (4) 0.0234 (4) −0.0003 (3) 0.0012 (3) −0.0038 (3)
S 0.0229 (2) 0.01610 (19) 0.0184 (2) −0.00051 (15) 0.00256 (15) 0.00059 (14)
O1 0.0382 (7) 0.0198 (6) 0.0145 (6) 0.0029 (5) −0.0053 (5) −0.0005 (5)
O2 0.0610 (9) 0.0186 (6) 0.0196 (6) 0.0057 (6) −0.0087 (6) 0.0003 (5)
O3 0.0870 (12) 0.0189 (7) 0.0285 (7) −0.0022 (7) −0.0168 (7) −0.0035 (5)
O4 0.0503 (8) 0.0298 (7) 0.0181 (6) 0.0013 (6) −0.0090 (6) −0.0012 (5)
O5 0.0249 (7) 0.0297 (7) 0.0294 (7) −0.0062 (5) 0.0045 (5) −0.0013 (5)
O6 0.0448 (8) 0.0212 (6) 0.0221 (7) −0.0007 (5) 0.0094 (6) −0.0036 (5)
O7 0.0272 (7) 0.0243 (6) 0.0284 (7) 0.0031 (5) −0.0006 (5) 0.0058 (5)
O8 0.0294 (7) 0.0570 (9) 0.0223 (7) −0.0067 (6) 0.0020 (5) −0.0017 (6)
O9 0.0336 (7) 0.0187 (6) 0.0185 (6) 0.0011 (5) −0.0041 (5) −0.0004 (5)
O10 0.0472 (8) 0.0290 (7) 0.0246 (7) 0.0009 (6) 0.0034 (6) 0.0035 (5)
O11 0.0276 (7) 0.0317 (7) 0.0381 (8) 0.0043 (5) −0.0047 (6) −0.0062 (6)
O12 0.0337 (7) 0.0291 (7) 0.0304 (7) 0.0028 (5) −0.0013 (6) −0.0073 (5)
O13 0.0381 (8) 0.0312 (7) 0.0370 (8) 0.0066 (6) 0.0037 (6) 0.0064 (6)
C1 0.0265 (9) 0.0194 (8) 0.0153 (8) 0.0006 (6) −0.0020 (6) 0.0009 (6)
C2 0.0269 (9) 0.0205 (8) 0.0155 (8) 0.0012 (7) −0.0012 (6) 0.0005 (6)
C3 0.0268 (9) 0.0203 (8) 0.0157 (8) −0.0007 (6) 0.0002 (6) −0.0017 (6)
C4 0.0213 (8) 0.0166 (7) 0.0185 (8) −0.0010 (6) 0.0024 (6) 0.0004 (6)
C5 0.0276 (9) 0.0218 (8) 0.0156 (8) 0.0006 (7) −0.0023 (6) 0.0023 (6)
C6 0.0290 (9) 0.0219 (8) 0.0161 (8) −0.0005 (7) −0.0021 (7) −0.0012 (6)
C7 0.0360 (10) 0.0170 (8) 0.0198 (8) −0.0003 (7) −0.0024 (7) −0.0005 (6)
C8 0.0312 (9) 0.0221 (8) 0.0182 (8) −0.0002 (7) −0.0027 (7) −0.0026 (6)

Geometric parameters (Å, °)

Ni—O1i 2.0252 (11) O5—Na1vii 2.3545 (14)
Ni—O1 2.0252 (11) O5—Na2vi 2.4814 (14)
Ni—O8i 2.0731 (14) O6—Na2viii 2.4271 (14)
Ni—O8 2.0731 (14) O8—H8A 0.8407
Ni—O9 2.0727 (11) O8—H8B 0.8534
Ni—O9i 2.0727 (11) O9—H9A 0.8532
Na1—O5ii 2.3545 (14) O9—H9B 0.8358
Na1—O12 2.3930 (14) O10—H10A 0.8273
Na1—O13 2.4095 (16) O10—H10B 0.8481
Na1—O9 2.4382 (14) O11—Na2iii 2.3511 (15)
Na1—O10 2.4669 (15) O11—H11A 0.8860
Na1—O11 2.5519 (16) O11—H11B 0.8656
Na1—Na2iii 3.3901 (10) O12—Na2iii 2.5105 (15)
Na2—O11iv 2.3511 (15) O12—H12A 0.8368
Na2—O6v 2.4271 (14) O12—H12B 0.8876
Na2—O2 2.4561 (14) O13—H13A 0.8386
Na2—O5vi 2.4814 (14) O13—H13B 0.8789
Na2—O10 2.4825 (16) C1—C2 1.508 (2)
Na2—O12iv 2.5105 (15) C2—C7 1.383 (2)
Na2—Na1iv 3.3901 (10) C2—C3 1.386 (2)
S—O6 1.4505 (12) C3—C4 1.381 (2)
S—O5 1.4525 (13) C3—H3 0.9300
S—O7 1.4645 (13) C4—C5 1.386 (2)
S—C4 1.7680 (16) C5—C6 1.391 (2)
O1—C1 1.266 (2) C5—H5 0.9300
O2—C1 1.242 (2) C6—C7 1.390 (2)
O3—C8 1.244 (2) C6—C8 1.517 (2)
O4—C8 1.250 (2) C7—H7 0.9300
O1i—Ni—O1 180.0 O7—S—C4 107.03 (7)
O1i—Ni—O9 87.70 (5) C1—O1—Ni 130.04 (11)
O1—Ni—O9 92.30 (5) C1—O2—Na2 160.79 (11)
O1i—Ni—O9i 92.30 (5) S—O5—Na1vii 136.10 (8)
O1—Ni—O9i 87.70 (5) S—O5—Na2vi 132.45 (8)
O9—Ni—O9i 180.000 (1) Na1vii—O5—Na2vi 88.98 (5)
O1i—Ni—O8i 90.09 (5) S—O6—Na2viii 152.77 (8)
O1—Ni—O8i 89.91 (5) Ni—O8—H8A 120.7
O9—Ni—O8i 91.97 (5) Ni—O8—H8B 122.2
O9i—Ni—O8i 88.03 (5) H8A—O8—H8B 107.8
O1i—Ni—O8 89.91 (5) Ni—O9—Na1 118.93 (6)
O1—Ni—O8 90.09 (5) Ni—O9—H9A 114.0
O9—Ni—O8 88.03 (5) Na1—O9—H9A 114.9
O9i—Ni—O8 91.97 (5) Ni—O9—H9B 104.1
O8i—Ni—O8 180.0 Na1—O9—H9B 98.0
O5ii—Na1—O12 79.14 (5) H9A—O9—H9B 103.4
O5ii—Na1—O13 85.05 (5) Na1—O10—Na2 127.93 (6)
O12—Na1—O13 100.31 (5) Na1—O10—H10A 119.3
O5ii—Na1—O9 151.89 (5) Na2—O10—H10A 99.6
O12—Na1—O9 87.31 (5) Na1—O10—H10B 106.5
O13—Na1—O9 121.84 (5) Na2—O10—H10B 96.3
O5ii—Na1—O10 100.75 (5) H10A—O10—H10B 102.5
O12—Na1—O10 160.96 (6) Na2iii—O11—Na1 87.39 (5)
O13—Na1—O10 98.64 (5) Na2iii—O11—H11A 122.8
O9—Na1—O10 84.27 (5) Na1—O11—H11A 114.7
O5ii—Na1—O11 73.06 (5) Na2iii—O11—H11B 126.9
O12—Na1—O11 79.75 (5) Na1—O11—H11B 98.8
O13—Na1—O11 157.76 (5) H11A—O11—H11B 102.2
O9—Na1—O11 80.39 (5) Na1—O12—Na2iii 87.44 (5)
O10—Na1—O11 82.02 (5) Na1—O12—H12A 102.6
O5ii—Na1—Na2iii 47.04 (4) Na2iii—O12—H12A 133.0
O12—Na1—Na2iii 47.71 (4) Na1—O12—H12B 135.0
O13—Na1—Na2iii 121.18 (4) Na2iii—O12—H12B 104.7
O9—Na1—Na2iii 106.32 (4) H12A—O12—H12B 99.8
O10—Na1—Na2iii 119.01 (4) Na1—O13—H13A 114.4
O11—Na1—Na2iii 43.85 (3) Na1—O13—H13B 110.5
O11iv—Na2—O6v 100.89 (5) H13A—O13—H13B 106.1
O11iv—Na2—O2 97.43 (5) O2—C1—O1 125.48 (15)
O6v—Na2—O2 82.41 (5) O2—C1—C2 118.99 (14)
O11iv—Na2—O5vi 74.44 (5) O1—C1—C2 115.47 (14)
O6v—Na2—O5vi 169.25 (5) C7—C2—C3 119.56 (15)
O2—Na2—O5vi 107.62 (5) C7—C2—C1 119.68 (15)
O11iv—Na2—O10 158.30 (6) C3—C2—C1 120.73 (14)
O6v—Na2—O10 100.73 (5) C4—C3—C2 119.12 (15)
O2—Na2—O10 83.55 (5) C4—C3—H3 120.4
O5vi—Na2—O10 84.57 (5) C2—C3—H3 120.4
O11iv—Na2—O12iv 81.40 (5) C3—C4—C5 121.77 (15)
O6v—Na2—O12iv 95.27 (5) C3—C4—S 117.02 (12)
O2—Na2—O12iv 177.18 (6) C5—C4—S 121.10 (12)
O5vi—Na2—O12iv 74.58 (5) C4—C5—C6 119.09 (15)
O10—Na2—O12iv 98.50 (5) C4—C5—H5 120.5
O11iv—Na2—Na1iv 48.76 (4) C6—C5—H5 120.5
O6v—Na2—Na1iv 125.80 (4) C7—C6—C5 119.09 (15)
O2—Na2—Na1iv 135.72 (4) C7—C6—C8 119.18 (14)
O5vi—Na2—Na1iv 43.98 (3) C5—C6—C8 121.73 (15)
O10—Na2—Na1iv 117.34 (4) C2—C7—C6 121.34 (15)
O12iv—Na2—Na1iv 44.84 (3) C2—C7—H7 119.3
O6—S—O5 113.27 (8) C6—C7—H7 119.3
O6—S—O7 112.03 (8) O3—C8—O4 124.58 (16)
O5—S—O7 111.61 (8) O3—C8—C6 116.32 (15)
O6—S—C4 107.10 (7) O4—C8—C6 119.10 (15)
O5—S—C4 105.26 (8)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+1/2, y−1/2, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+3/2, y+1/2, −z+1/2; (viii) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O8—H8A···O13ix 0.84 2.03 2.861 (2) 173
O8—H8B···O4vi 0.85 1.99 2.8130 (19) 162
O9—H9A···O7v 0.85 2.16 2.9854 (17) 163
O9—H9B···O2 0.84 1.82 2.6168 (17) 159
O10—H10A···O7vi 0.83 2.04 2.8553 (19) 167
O10—H10B···O3iii 0.85 1.83 2.6615 (19) 165
O11—H11A···O7v 0.89 1.90 2.7659 (18) 167
O11—H11B···O3iii 0.87 1.92 2.783 (2) 175
O12—H12A···O1i 0.84 2.11 2.9470 (18) 173
O12—H12B···O4x 0.89 2.04 2.8994 (19) 163
O13—H13A···O4vi 0.84 1.94 2.733 (2) 157
O13—H13B···O6ii 0.88 2.21 2.9486 (19) 141
C7—H7···O11iv 0.93 2.50 3.371 (2) 157

Symmetry codes: (ix) −x+2, −y+1, −z+1; (vi) −x+1, −y+1, −z; (v) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (i) −x+1, −y+1, −z+1; (x) x+1, y, z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2561).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Pan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183–m2185.
  5. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, TX, USA 77381-5209.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.
  9. Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m387–m388. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009489/ng2561sup1.cif

e-65-0m429-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009489/ng2561Isup2.hkl

e-65-0m429-Isup2.hkl (149.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES