Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o871–o872. doi: 10.1107/S1600536809010137

5-Chloro-8-hydr­oxy-6-methyl-1,4-naphthoquinone

Daniel Teoh-Chuan Tan a, Hasnah Osman a,, Azlina Harun Kamaruddin b, Samuel Robinson Jebas c,§, Hoong-Kun Fun c,*
PMCID: PMC2969072  PMID: 21582583

Abstract

The mol­ecule of the title compound, C11H7ClO3, is planar, with a maximum deviation of 0.0383 (10) Å from the naphthoquinone plane. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds. Short intra­molecular Cl⋯O [2.8234 (8) Å] and O⋯O [2.5530 (11) Å], and inter­molecular Cl⋯Cl [3.2777 (3) Å] contacts further stabilize the crystal structure.

Related literature

For the biological activity of the related compound 7-methyl­juglone, see: Mahapatra et al. (2007); Van der Kooy & Meyer (2006). For the synthesis of 7-methyl­juglone from the title compound, see: Musgrave & Skoyles (2001); Mahapatra et al. (2007). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-0o871-scheme1.jpg

Experimental

Crystal data

  • C11H7ClO3

  • M r = 222.62

  • Monoclinic, Inline graphic

  • a = 10.7546 (1) Å

  • b = 10.3104 (1) Å

  • c = 16.8370 (2) Å

  • β = 100.285 (1)°

  • V = 1836.96 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.30 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.891, T max = 0.945

  • 17328 measured reflections

  • 4015 independent reflections

  • 3356 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.109

  • S = 1.07

  • 4015 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010137/sj2597sup1.cif

e-65-0o871-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010137/sj2597Isup2.hkl

e-65-0o871-Isup2.hkl (192.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2 0.86 1.73 2.5530 (11) 161
C2—H2A⋯O1i 0.93 2.51 3.4124 (12) 163
C3—H3A⋯O2ii 0.93 2.57 3.3000 (12) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. HO and AHK thank the Malaysian Government for the FRGS fund (203/PKIMIA/671026). DT-CT thanks Universiti Sains Malaysia for financial support.

supplementary crystallographic information

Comment

5-Hydroxy-7-methyl-1,4-naphthoquinone (7-methyljuglone) has recently been reported to exhibit activity against mycobacterium tuberculosis (Van der Kooy & Meyer, 2006; Mahapatra et al., 2007). Naturally occurring 7-methyljuglone is synthesised from 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone in high yield (Musgrave & Skoyles, 2001; Mahapatra et al., 2007). This paper reports the molecular structure of 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone; the precursor to synthetic 7-methyljuglone.

The asymmetric unit of (I) consists of one molecule of 8-Chloro-5-hydroxy-7-methyl-1,4-naphthoquinone. The napthoquinone ring is essentially planar with the maximum deviation from planarity being 0.0383 (10) Å for atom C8. The bond lengths in (I) have normal values (Allen et al., 1987).

An intramolecular O–H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C–H···O hydrogen bonds (Table 2) (Fig 2). Short intramolecular Cl···O = 2.8234 (8) Å; O···O = 2.5530 (11)Å and intermolecular Cl···Cli = 3.2777 (3) Å [symmetry code: (i) 1 - x, y, 3/2 - z] contacts further stabilize the crystal packing.

Experimental

The title compound was prepared from the Friedel-Crafts acylation of 4-chloro-3-methylphenol with maleic anhydride (Musgrave & Skoyles, 2001). Repeated Soxhlet extraction of the crude Friedel-Crafts product with n-hexane, and silica gel column chromatography purification [chloroform and n-hexane (1:9)] of the n-hexane extract afforded the title compound. Finally, slow evaporation of a n-hexane solution at 305 K gave single crystals of the title compound.

Refinement

H atoms were positioned geometrically [C–H = 0.93 (aromatic) or 0.96Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2Ueq(aromatic C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The O bound hydrogen atom was located from the Fourier map and and refined isotropically with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular H bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis, showing dimer formation. Dashed lines indicate the hydrogen bonding.

Crystal data

C11H7ClO3 F(000) = 912
Mr = 222.62 Dx = 1.610 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6307 reflections
a = 10.7546 (1) Å θ = 2.8–30.1°
b = 10.3104 (1) Å µ = 0.40 mm1
c = 16.8370 (2) Å T = 100 K
β = 100.285 (1)° Block, red
V = 1836.96 (3) Å3 0.30 × 0.21 × 0.14 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4015 independent reflections
Radiation source: fine-focus sealed tube 3356 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 35.1°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→17
Tmin = 0.891, Tmax = 0.945 k = −16→16
17328 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.6106P] where P = (Fo2 + 2Fc2)/3
4015 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.60008 (2) 0.08776 (3) 0.687132 (14) 0.02314 (8)
O1 0.40351 (7) 0.18970 (8) 0.57005 (5) 0.02395 (16)
O2 0.64859 (7) 0.18264 (8) 0.31989 (4) 0.02085 (15)
O3 0.83772 (7) 0.06289 (8) 0.40048 (4) 0.02028 (14)
H1O3 0.7847 0.1042 0.3653 0.030*
C1 0.46492 (8) 0.18621 (9) 0.51561 (6) 0.01565 (16)
C2 0.40771 (9) 0.23850 (9) 0.43571 (6) 0.01789 (17)
H2A 0.3271 0.2743 0.4292 0.021*
C3 0.46720 (9) 0.23648 (9) 0.37229 (6) 0.01852 (17)
H3A 0.4275 0.2710 0.3232 0.022*
C4 0.59410 (9) 0.18056 (9) 0.37912 (5) 0.01556 (16)
C5 0.77541 (8) 0.06817 (8) 0.46273 (6) 0.01477 (15)
C6 0.83488 (8) 0.01527 (9) 0.53621 (6) 0.01568 (16)
H6A 0.9135 −0.0238 0.5394 0.019*
C7 0.77959 (8) 0.01969 (9) 0.60416 (5) 0.01563 (15)
C8 0.65972 (8) 0.07923 (9) 0.59849 (5) 0.01508 (15)
C9 0.59512 (8) 0.12905 (8) 0.52543 (5) 0.01356 (15)
C10 0.65466 (8) 0.12451 (8) 0.45647 (5) 0.01354 (15)
C11 0.84754 (10) −0.03753 (11) 0.68182 (6) 0.02193 (19)
H11A 0.9265 −0.0738 0.6736 0.033*
H11B 0.7964 −0.1044 0.6993 0.033*
H11C 0.8632 0.0290 0.7222 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02101 (12) 0.03306 (14) 0.01720 (11) 0.00279 (9) 0.00841 (8) 0.00089 (8)
O1 0.0164 (3) 0.0311 (4) 0.0264 (4) 0.0055 (3) 0.0096 (3) −0.0001 (3)
O2 0.0206 (3) 0.0258 (3) 0.0170 (3) 0.0004 (3) 0.0055 (3) 0.0009 (3)
O3 0.0172 (3) 0.0258 (3) 0.0200 (3) 0.0053 (3) 0.0093 (3) 0.0014 (3)
C1 0.0117 (3) 0.0146 (3) 0.0210 (4) 0.0004 (3) 0.0040 (3) −0.0023 (3)
C2 0.0123 (4) 0.0162 (4) 0.0243 (4) 0.0018 (3) 0.0009 (3) −0.0017 (3)
C3 0.0150 (4) 0.0188 (4) 0.0206 (4) 0.0015 (3) 0.0000 (3) 0.0006 (3)
C4 0.0146 (4) 0.0150 (3) 0.0170 (4) −0.0012 (3) 0.0027 (3) −0.0009 (3)
C5 0.0122 (3) 0.0152 (3) 0.0181 (4) −0.0003 (3) 0.0058 (3) −0.0017 (3)
C6 0.0115 (3) 0.0164 (4) 0.0193 (4) 0.0008 (3) 0.0034 (3) −0.0012 (3)
C7 0.0126 (3) 0.0168 (4) 0.0171 (4) −0.0006 (3) 0.0017 (3) −0.0010 (3)
C8 0.0130 (3) 0.0174 (4) 0.0154 (4) −0.0011 (3) 0.0043 (3) −0.0013 (3)
C9 0.0103 (3) 0.0137 (3) 0.0172 (4) −0.0002 (3) 0.0040 (3) −0.0017 (3)
C10 0.0113 (3) 0.0141 (3) 0.0156 (3) 0.0001 (3) 0.0033 (3) −0.0014 (3)
C11 0.0189 (4) 0.0279 (5) 0.0177 (4) 0.0024 (4) −0.0001 (3) 0.0016 (3)

Geometric parameters (Å, °)

Cl1—C8 1.7287 (9) C5—C6 1.3980 (13)
O1—C1 1.2222 (12) C5—C10 1.4092 (12)
O2—C4 1.2438 (11) C6—C7 1.3812 (13)
O3—C5 1.3423 (11) C6—H6A 0.9300
O3—H1O3 0.8581 C7—C8 1.4156 (13)
C1—C2 1.4777 (14) C7—C11 1.5002 (13)
C1—C9 1.5008 (12) C8—C9 1.3980 (13)
C2—C3 1.3393 (14) C9—C10 1.4234 (12)
C2—H2A 0.9300 C11—H11A 0.9600
C3—C4 1.4670 (13) C11—H11B 0.9600
C3—H3A 0.9300 C11—H11C 0.9600
C4—C10 1.4667 (13)
C5—O3—H1O3 99.0 C6—C7—C8 118.69 (8)
O1—C1—C2 118.62 (8) C6—C7—C11 119.62 (8)
O1—C1—C9 123.19 (9) C8—C7—C11 121.69 (8)
C2—C1—C9 118.18 (8) C9—C8—C7 121.48 (8)
C3—C2—C1 122.65 (8) C9—C8—Cl1 122.56 (7)
C3—C2—H2A 118.7 C7—C8—Cl1 115.95 (7)
C1—C2—H2A 118.7 C8—C9—C10 118.71 (8)
C2—C3—C4 120.92 (9) C8—C9—C1 123.27 (8)
C2—C3—H3A 119.5 C10—C9—C1 118.02 (8)
C4—C3—H3A 119.5 C5—C10—C9 119.69 (8)
O2—C4—C10 121.37 (8) C5—C10—C4 119.08 (8)
O2—C4—C3 119.69 (8) C9—C10—C4 121.21 (8)
C10—C4—C3 118.94 (8) C7—C11—H11A 109.5
O3—C5—C6 117.51 (8) C7—C11—H11B 109.5
O3—C5—C10 122.69 (8) H11A—C11—H11B 109.5
C6—C5—C10 119.80 (8) C7—C11—H11C 109.5
C7—C6—C5 121.57 (8) H11A—C11—H11C 109.5
C7—C6—H6A 119.2 H11B—C11—H11C 109.5
C5—C6—H6A 119.2
O1—C1—C2—C3 −178.75 (9) O1—C1—C9—C8 −2.55 (14)
C9—C1—C2—C3 0.15 (13) C2—C1—C9—C8 178.61 (8)
C1—C2—C3—C4 0.34 (14) O1—C1—C9—C10 176.82 (9)
C2—C3—C4—O2 −178.28 (9) C2—C1—C9—C10 −2.03 (12)
C2—C3—C4—C10 1.01 (14) O3—C5—C10—C9 −178.76 (8)
O3—C5—C6—C7 178.08 (8) C6—C5—C10—C9 1.06 (13)
C10—C5—C6—C7 −1.75 (13) O3—C5—C10—C4 −0.34 (13)
C5—C6—C7—C8 0.12 (13) C6—C5—C10—C4 179.48 (8)
C5—C6—C7—C11 −179.54 (9) C8—C9—C10—C5 1.20 (13)
C6—C7—C8—C9 2.23 (13) C1—C9—C10—C5 −178.19 (8)
C11—C7—C8—C9 −178.11 (9) C8—C9—C10—C4 −177.18 (8)
C6—C7—C8—Cl1 −177.07 (7) C1—C9—C10—C4 3.43 (12)
C11—C7—C8—Cl1 2.59 (12) O2—C4—C10—C5 −2.09 (13)
C7—C8—C9—C10 −2.87 (13) C3—C4—C10—C5 178.63 (8)
Cl1—C8—C9—C10 176.38 (7) O2—C4—C10—C9 176.30 (8)
C7—C8—C9—C1 176.48 (8) C3—C4—C10—C9 −2.98 (13)
Cl1—C8—C9—C1 −4.26 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H1O3···O2 0.86 1.73 2.5530 (11) 161
C2—H2A···O1i 0.93 2.51 3.4124 (12) 163
C3—H3A···O2ii 0.93 2.57 3.3000 (12) 136

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2597).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Mahapatra, A., Mativandlela, S. P. N., Binneman, B., Fourie, P. B., Hamilton, C. J., Meyer, J. J. M., Van der Kooy, F., Houghton, P. & Lall, N. (2007). Bioorg. Med. Chem.15, 7638–7646. [DOI] [PubMed]
  6. Musgrave, O. C. & Skoyles, D. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1318–1320.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Van der Kooy, F. & Meyer, J. J. M. (2006). S. Afr. J. Chem.59, 60–61.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010137/sj2597sup1.cif

e-65-0o871-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010137/sj2597Isup2.hkl

e-65-0o871-Isup2.hkl (192.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES