Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o709. doi: 10.1107/S1600536809007259

Choline dihydrogen phosphate

Kyoko Fujita a, Douglas R MacFarlane b, Keiichi Noguchi c, Hiroyuki Ohno a,*
PMCID: PMC2969078  PMID: 21582446

Abstract

In the cystal structure of the title compound, (2-hy­droxy­ethyl)trimethylammonium dihydrogen phosphate, C5H14NO+·H2PO4 , two anions create dimeric structures via two O—H⋯O hydrogen bonds. The hydrogen-bonded dimers are connected by another O—H⋯O hydrogen bond with the hydroxyl groups of the cations, constructing a columner structure along the a axis. A number of C—H⋯O interactions are also present.

Related literature

For background to ionic liquids, see: Byrne et al. (2007); Fujita et al. (2005); Ohno (2005); van Rantwijk et al. (2003); Seddon (1997); Wasserscheid & Welton (2002); Welton (1999); Zhao et al. (2008).graphic file with name e-65-0o709-scheme1.jpg

Experimental

Crystal data

  • C5H14NO+·H2PO4

  • M r = 201.16

  • Triclinic, Inline graphic

  • a = 6.9232 (3) Å

  • b = 8.2807 (4) Å

  • c = 9.2333 (3) Å

  • α = 84.458 (3)°

  • β = 71.414 (3)°

  • γ = 70.758 (3)°

  • V = 473.68 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.55 mm−1

  • T = 193 K

  • 0.60 × 0.10 × 0.02 mm

Data collection

  • Rigaku RAXIS-RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.429, T max = 0.950

  • 8717 measured reflections

  • 1714 independent reflections

  • 1344 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.121

  • S = 1.12

  • 1714 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson (1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007259/at2730sup1.cif

e-65-0o709-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007259/at2730Isup2.hkl

e-65-0o709-Isup2.hkl (82.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.80 (4) 1.79 (4) 2.586 (3) 178 (3)
O4—H4O⋯O2i 0.93 (4) 1.60 (4) 2.526 (2) 173 (3)
O5—H5O⋯O1ii 0.93 (4) 1.63 (4) 2.556 (3) 176 (4)
C3—H3B⋯O1 0.98 2.48 3.439 (3) 166
C4—H4B⋯O3iii 0.98 2.54 3.504 (3) 170
C4—H4C⋯O1iv 0.98 2.49 3.457 (3) 168
C5—H5A⋯O3iv 0.98 2.46 3.430 (3) 172
C5—H5B⋯O1iii 0.98 2.42 3.382 (3) 169
C5—H5C⋯O2 0.98 2.60 3.549 (3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. KF thanks the Japan Society for the Promotion of Science (Research Fellowship for Young Scientists) for support.

supplementary crystallographic information

Comment

Some ionic liquids (ILs) possess negligible vapor pressure as well as fascinating features such as high thermal, chemical and electrochemical stability. ILs have gained increasing attention as green, multi-use reaction media as well as solvents for a electrochemistry and chemistry (Welton, 1999; Seddon, 1997; Wasserscheid & Welton, 2002). ILs are also currently being investigated for a variety of bio-applications including media for biocatalytic reactions (van Rantwijk et al., 2003; Zhao et al., 2008), biosensors (Ohno, 2005) and protein stabilization (Fujita et al., 2005; Byrne et al., 2007). We have been studying hydrated IL as solvents for proteins. We have already reported that some proteins are soluble, stable, and remain active in some hydrated ILs. For example, the title compounds, acts as an excellent preserver of proteins such as cytochrome c.

The title compound (I) consists of cations and anions. The molecular structures of (I) are shown in Fig. 1. Two hydrogen bonds of O4—H···O2 connect anions and construct dimer along the b axis (Fig. 2). The dimers are connected with each other by the two hydrogen bonds of O5—H···O1 and O3—H···O5, through the hydroxyl group (Table 1). These hydrogen bonds create a columnar structure of anions and cations along the a axis. The columnar structures interact with each other by C—H···O hydrogen bond and van der Waals forces (Table 1).

Experimental

Choline bromide solution was treated on an ion exchange resin (Amberlite IRN77), then mixed with phosphoric acid solution. The solvent evaporated and the product was dried in vacuo. White powder was dissolved in methanol, then reprecipited by dropping in acetone. This reprecipitation was repeated four times. Final purification was achieved by drowning-out crystallization from methanol solution. Aceton was used as antisolvent. This drowning-out crystallization was repeated twice at room temperature for X-ray measurements. The compound was identified using 1H NMR, DSC and Electrospray mass spectrometry.

Refinement

The H atoms of the OH groups were found in difference maps and refined freely. The other C-bound H atoms were subsequently refined as riding atoms, with C—H = 0.98 and 0.99Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot and atomic numbering scheme of (I). Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.

Fig. 2.

Fig. 2.

The molecular packing of (I) viewed along b axis. Dashed lines indicate intermolecular O—H···O hydrogen bonds. For clarity, only H atoms involved in O—H···O hydrogen bonding have been included. [Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 1, -y + 1, -z.]

Crystal data

C5H14NO+·H2PO4 Z = 2
Mr = 201.16 F(000) = 216
Triclinic, P1 Dx = 1.410 Mg m3
Hall symbol: -P 1 Melting point: 392 K
a = 6.9232 (3) Å Cu Kα radiation, λ = 1.54187 Å
b = 8.2807 (4) Å Cell parameters from 6930 reflections
c = 9.2333 (3) Å θ = 5.1–68.3°
α = 84.458 (3)° µ = 2.55 mm1
β = 71.414 (3)° T = 193 K
γ = 70.758 (3)° Platelet, colourless
V = 473.68 (4) Å3 0.60 × 0.10 × 0.02 mm

Data collection

Rigaku RAXIS-RAPID diffractometer 1714 independent reflections
Radiation source: rotating anode 1344 reflections with I > 2σ(I)
graphite Rint = 0.053
Detector resolution: 10.00 pixels mm-1 θmax = 68.3°, θmin = 5.1°
ω scans h = −8→8
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −9→9
Tmin = 0.429, Tmax = 0.950 l = −11→11
8717 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: difference Fourier map
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.050P] where P = (Fo2 + 2Fc2)/3
1714 reflections (Δ/σ)max < 0.001
124 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.81645 (9) 0.68990 (7) 0.17447 (6) 0.0335 (2)
O1 0.5777 (2) 0.7534 (2) 0.24514 (18) 0.0430 (5)
O2 0.9220 (3) 0.50241 (19) 0.19693 (17) 0.0439 (5)
O3 0.9039 (3) 0.8007 (2) 0.25187 (19) 0.0390 (4)
O4 0.8798 (3) 0.7343 (2) 0.00080 (18) 0.0406 (4)
O5 0.7017 (3) 0.2172 (2) −0.10979 (19) 0.0452 (5)
N1 0.4405 (3) 0.2917 (2) 0.3125 (2) 0.0340 (5)
C1 0.5122 (4) 0.3227 (3) 0.1424 (2) 0.0342 (5)
H1A 0.5978 0.4020 0.1227 0.041*
H1B 0.3832 0.3801 0.1096 0.041*
C2 0.6444 (4) 0.1635 (3) 0.0453 (2) 0.0391 (6)
H2A 0.7750 0.1035 0.0755 0.047*
H2B 0.5596 0.0844 0.0584 0.047*
C3 0.3093 (4) 0.4616 (3) 0.3894 (3) 0.0417 (6)
H3A 0.1821 0.5104 0.3547 0.050*
H3B 0.3958 0.5391 0.3633 0.050*
H3C 0.2640 0.4464 0.5003 0.050*
C4 0.3029 (4) 0.1774 (3) 0.3487 (3) 0.0458 (7)
H4A 0.1836 0.2257 0.3057 0.055*
H4B 0.2458 0.1681 0.4597 0.055*
H4C 0.3893 0.0636 0.3042 0.055*
C5 0.6299 (4) 0.2169 (3) 0.3699 (3) 0.0435 (6)
H5A 0.7117 0.1024 0.3255 0.052*
H5B 0.5805 0.2089 0.4815 0.052*
H5C 0.7219 0.2902 0.3403 0.052*
H3O 1.025 (5) 0.793 (4) 0.209 (3) 0.058 (9)*
H4O 0.959 (6) 0.643 (5) −0.067 (4) 0.096 (12)*
H5O 0.597 (5) 0.232 (4) −0.158 (4) 0.090 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0331 (4) 0.0388 (4) 0.0280 (4) −0.0104 (3) −0.0088 (3) −0.0016 (2)
O1 0.0311 (9) 0.0607 (12) 0.0372 (9) −0.0139 (8) −0.0102 (7) −0.0032 (8)
O2 0.0622 (11) 0.0359 (10) 0.0292 (9) −0.0108 (8) −0.0130 (8) 0.0003 (7)
O3 0.0323 (9) 0.0490 (10) 0.0363 (9) −0.0148 (8) −0.0066 (7) −0.0093 (7)
O4 0.0474 (10) 0.0392 (10) 0.0298 (9) −0.0082 (8) −0.0099 (7) −0.0009 (7)
O5 0.0372 (9) 0.0728 (13) 0.0290 (9) −0.0221 (9) −0.0102 (7) 0.0022 (8)
N1 0.0408 (11) 0.0326 (10) 0.0299 (10) −0.0123 (8) −0.0125 (8) 0.0028 (8)
C1 0.0372 (12) 0.0396 (13) 0.0284 (12) −0.0143 (10) −0.0124 (10) 0.0042 (9)
C2 0.0421 (13) 0.0476 (14) 0.0282 (12) −0.0154 (11) −0.0103 (10) 0.0001 (10)
C3 0.0476 (14) 0.0366 (13) 0.0340 (12) −0.0063 (11) −0.0097 (11) −0.0028 (10)
C4 0.0574 (16) 0.0469 (15) 0.0356 (13) −0.0284 (13) −0.0064 (11) 0.0038 (11)
C5 0.0506 (15) 0.0435 (14) 0.0352 (13) −0.0045 (12) −0.0223 (11) 0.0006 (11)

Geometric parameters (Å, °)

P1—O1 1.4969 (16) C1—H1A 0.9900
P1—O2 1.5080 (16) C1—H1B 0.9900
P1—O4 1.5629 (16) C2—H2A 0.9900
P1—O3 1.5771 (17) C2—H2B 0.9900
O3—H3O 0.79 (3) C3—H3A 0.9800
O4—H4O 0.93 (4) C3—H3B 0.9800
O5—C2 1.427 (3) C3—H3C 0.9800
O5—H5O 0.93 (4) C4—H4A 0.9800
N1—C5 1.493 (3) C4—H4B 0.9800
N1—C4 1.499 (3) C4—H4C 0.9800
N1—C3 1.499 (3) C5—H5A 0.9800
N1—C1 1.513 (3) C5—H5B 0.9800
C1—C2 1.513 (3) C5—H5C 0.9800
O1—P1—O2 115.19 (10) C1—C2—H2A 110.3
O1—P1—O4 110.63 (9) O5—C2—H2B 110.3
O2—P1—O4 110.24 (9) C1—C2—H2B 110.3
O1—P1—O3 104.81 (9) H2A—C2—H2B 108.6
O2—P1—O3 109.78 (10) N1—C3—H3A 109.5
O4—P1—O3 105.63 (10) N1—C3—H3B 109.5
P1—O3—H3O 113 (2) H3A—C3—H3B 109.5
P1—O4—H4O 117 (2) N1—C3—H3C 109.5
C2—O5—H5O 114 (2) H3A—C3—H3C 109.5
C5—N1—C4 110.68 (19) H3B—C3—H3C 109.5
C5—N1—C3 108.80 (19) N1—C4—H4A 109.5
C4—N1—C3 108.66 (19) N1—C4—H4B 109.5
C5—N1—C1 110.65 (17) H4A—C4—H4B 109.5
C4—N1—C1 110.51 (18) N1—C4—H4C 109.5
C3—N1—C1 107.44 (16) H4A—C4—H4C 109.5
N1—C1—C2 114.88 (18) H4B—C4—H4C 109.5
N1—C1—H1A 108.5 N1—C5—H5A 109.5
C2—C1—H1A 108.5 N1—C5—H5B 109.5
N1—C1—H1B 108.5 H5A—C5—H5B 109.5
C2—C1—H1B 108.5 N1—C5—H5C 109.5
H1A—C1—H1B 107.5 H5A—C5—H5C 109.5
O5—C2—C1 107.09 (19) H5B—C5—H5C 109.5
O5—C2—H2A 110.3
C5—N1—C1—C2 62.5 (3) C3—N1—C1—C2 −178.9 (2)
C4—N1—C1—C2 −60.5 (3) N1—C1—C2—O5 −178.51 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O5i 0.80 (4) 1.79 (4) 2.586 (3) 178 (3)
O4—H4O···O2i 0.93 (4) 1.60 (4) 2.526 (2) 173 (3)
O5—H5O···O1ii 0.93 (4) 1.63 (4) 2.556 (3) 176 (4)
C3—H3B···O1 0.98 2.48 3.439 (3) 166
C4—H4B···O3iii 0.98 2.54 3.504 (3) 170
C4—H4C···O1iv 0.98 2.49 3.457 (3) 168
C5—H5A···O3iv 0.98 2.46 3.430 (3) 172
C5—H5B···O1iii 0.98 2.42 3.382 (3) 169
C5—H5C···O2 0.98 2.60 3.549 (3) 164

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2730).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Byrne, N., Wang, L.-M., Belieres, J.-P. & Angell, C. A. (2007). Chem. Commun. pp. 2714–2716. [DOI] [PubMed]
  4. Fujita, K., MacFarlane, D. R. & Forsyth, M. (2005). Chem. Commun. pp. 4804-4806. [DOI] [PubMed]
  5. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  6. Ohno, H. (2005). Electrochemical Aspects of Ionic Liquids. New York: Wiley-Interscience.
  7. Rantwijk, F. van, Madeira, L. R. & Sheldon, R. A. (2003). Trends Biotechnol.21, 131–138. [DOI] [PubMed]
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Seddon, K. R. (1997). J. Chem. Technol. Biotechnol.68, 351–356.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wasserscheid, P. & Welton, T. (2002). Ionic liquids in synthesis. Weinheim: Wiley-VCH, Verlag.
  13. Welton, T. (1999). Chem. Rev.99, 2071–2084. [DOI] [PubMed]
  14. Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T. & Peters, D. (2008). Green Chem.10, 696–705.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007259/at2730sup1.cif

e-65-0o709-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007259/at2730Isup2.hkl

e-65-0o709-Isup2.hkl (82.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES