Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o833–o834. doi: 10.1107/S1600536809009957

N-(2,4-Dinitro­phen­yl)-N′-(1-p-tolyl­ethyl­idene)hydrazine

Reza Kia a, Hoong-Kun Fun a,*, Bijan Etemadi b, Hadi Kargar c
PMCID: PMC2969085  PMID: 21582553

Abstract

In the title mol­ecule, C15H14N4O4, the dihedral angle between the two benzene rings is 2.21 (7)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. The mean planes of the ortho- and para-nitro groups make dihedral angles of 2.17 (17) and 2.05 (16)°, respectively, with the benzene ring to which they are attached. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds generate R 2 2(7), R 2 2(13) and R 2 1(10) ring motifs, linking symmetry-related mol­ecules into extended chains along the b axis. In addition, there are inter­molecular C⋯C [3.332 (2)–3.343 (2) Å] contacts which are shorter than the sum of the van der Waals radii. The crystal structure is further stabilized by inter­molecular C—H⋯π and π–π stacking inter­actions [centroid–centroid distance = 3.8090 (9) Å].

Related literature

For bond-length data, see: (Allen et al. 1987). For hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2009); Kia et al. (2009). For background information on 2,4-dinitro­phenyl­hydrazones, see: Cordis et al. (1998); Guillaumont & Nakamura (2000); Lamberton et al. (1974); Niknam et al. (2005); Raj & Kurup (2006); Zegota (1999); Zlotorzynska & Lai (1999); For the synthetic procedure, see: Okabe et al. (1993). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-0o833-scheme1.jpg

Experimental

Crystal data

  • C15H14N4O4

  • M r = 314.30

  • Monoclinic, Inline graphic

  • a = 7.6948 (1) Å

  • b = 14.9092 (3) Å

  • c = 12.5224 (2) Å

  • β = 91.778 (1)°

  • V = 1435.92 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.23 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.974, T max = 0.984

  • 16826 measured reflections

  • 4211 independent reflections

  • 3206 reflections with I > 2˘I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.143

  • S = 1.08

  • 4211 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009957/lh2788sup1.cif

e-65-0o833-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009957/lh2788Isup2.hkl

e-65-0o833-Isup2.hkl (206.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4 0.85 (2) 1.96 (2) 2.5966 (18) 131.3 (18)
C4—H4A⋯O4i 0.93 2.51 3.232 (2) 135
C5—H5A⋯O3i 0.93 2.55 3.4409 (19) 161
C9—H9A⋯O3i 0.93 2.41 3.295 (2) 158
C14—H14CCg1ii 0.96 2.68 3.5635 (17) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C8–C13 benzene ring.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. BE thanks Shiraz University for financial support. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

2,4-Dinitrophenylhydrazones play a more important role as stabilizers for the detection, characterization and protection of carbonyl groups than do phenylhydrazones (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton et al., 1974; Zegota, 1999; Cordis et al., 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). The above information attracted our interest in the title compound and the the crystal structure is reported herein.

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) have normal values and are comparable to the related structures (Fun et al. 2009; Kia et al. 2009). An intramolecular N—H···O hydrogen bond generates a S(6) ring motif (Bernstein et al., 1995). Weak intermolecular C—H···O hydrogen bonds generate R22(7), R22(13) and R21(10) ring motifs. These interactions link symmetry related molecules into extended chains along the b axis (Fig. 2). The molecule is approximately planar, with the maximum deviation from the mean plane of the molecule being 0.381 (2) Å for atom C14. The dihedral angle between the two benzene rings is 4.63 (1)°. Some interesting features of the crystal structure are the short intermolecular contacts of O2···O2i [3.0319(170 Å; (i) -x, -y, 2 - z] and O2···N3i [3.0513 (18) Å] and in addition the C2···C3iii [3.332 (2) Å; (iii) 1 - x, -y, 2 - z ], C2···C12iv [3.340 (2) Å; (iv) 1 - x, -y , 1 - z], C7···C13ii [3.343 (2) Å] contacts which are shorter than the sum of the van der Waals radii. The crystal structure is further stabilized by intermolecular C—H···π and π-π interactions [Cg1···Cg2 = 3.8090 (9) Å; Cg1 and Cg2 are the centroids of the C8–C13 and C1–C6 benzene rings].

Experimental

The title compound was synthesized based on the reported procedure (Okabe et al. 1993) except that 4-methyl-acetophenone (1 mmol) was used instead. Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in acetone.

Refinement

The N-bound H atom was located from the difference Fourier map and refined freely; see, Table 1. The remaining H atoms were positined geometrically and constrained with a riding model approximation with C—H = 0.93–0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, viewed along the c-axis, showing molecules linked by weak intermolecular C—H···O interactions along the b-axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C15H14N4O4 F(000) = 656
Mr = 314.30 Dx = 1.454 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5279 reflections
a = 7.6948 (1) Å θ = 2.7–30.0°
b = 14.9092 (3) Å µ = 0.11 mm1
c = 12.5224 (2) Å T = 100 K
β = 91.778 (1)° Block, red
V = 1435.92 (4) Å3 0.25 × 0.23 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4211 independent reflections
Radiation source: fine-focus sealed tube 3206 reflections with I > 2˘I)
graphite Rint = 0.030
φ and ω scans θmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.974, Tmax = 0.984 k = −20→17
16826 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.5547P] where P = (Fo2 + 2Fc2)/3
4211 reflections (Δ/σ)max = 0.001
214 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.17776 (17) 0.87567 (9) 1.02191 (10) 0.0328 (3)
O2 0.16471 (16) 1.01618 (9) 1.06678 (9) 0.0279 (3)
O3 0.45972 (17) 1.23529 (8) 0.87222 (10) 0.0312 (3)
O4 0.60603 (15) 1.20508 (8) 0.73223 (9) 0.0260 (3)
N1 0.62455 (17) 1.04202 (9) 0.66064 (10) 0.0176 (3)
N2 0.67704 (16) 0.97591 (9) 0.59199 (10) 0.0175 (3)
N3 0.21243 (18) 0.95518 (10) 1.00792 (10) 0.0228 (3)
N4 0.51408 (17) 1.18141 (9) 0.80690 (10) 0.0210 (3)
C1 0.47019 (19) 1.08784 (10) 0.81806 (11) 0.0167 (3)
C2 0.36357 (19) 1.06601 (10) 0.90212 (11) 0.0178 (3)
H2A 0.3226 1.1105 0.9469 0.021*
C3 0.3200 (2) 0.97796 (11) 0.91782 (11) 0.0180 (3)
C4 0.3812 (2) 0.90980 (11) 0.85198 (11) 0.0191 (3)
H4A 0.3528 0.8503 0.8653 0.023*
C5 0.4829 (2) 0.93102 (10) 0.76795 (11) 0.0177 (3)
H5A 0.5221 0.8854 0.7241 0.021*
C6 0.52995 (19) 1.02107 (10) 0.74630 (11) 0.0159 (3)
C7 0.74308 (19) 1.00482 (10) 0.50440 (11) 0.0169 (3)
C8 0.80349 (19) 0.93424 (10) 0.43032 (11) 0.0172 (3)
C9 0.7621 (2) 0.84429 (11) 0.44813 (12) 0.0208 (3)
H9A 0.6965 0.8292 0.5066 0.025*
C10 0.8168 (2) 0.77741 (11) 0.38063 (13) 0.0247 (4)
H10A 0.7869 0.7182 0.3943 0.030*
C11 0.9165 (2) 0.79729 (12) 0.29186 (12) 0.0223 (3)
C12 0.9582 (2) 0.88663 (12) 0.27404 (12) 0.0223 (3)
H12A 1.0245 0.9015 0.2158 0.027*
C13 0.9029 (2) 0.95450 (11) 0.34177 (11) 0.0198 (3)
H13A 0.9323 1.0138 0.3279 0.024*
C14 0.7563 (2) 1.10272 (11) 0.47653 (12) 0.0208 (3)
H14A 0.6455 1.1310 0.4853 0.031*
H14B 0.7899 1.1088 0.4037 0.031*
H14C 0.8418 1.1308 0.5229 0.031*
C15 0.9752 (2) 0.72351 (13) 0.21878 (14) 0.0298 (4)
H15A 0.8783 0.6855 0.2000 0.045*
H15B 1.0642 0.6887 0.2547 0.045*
H15C 1.0205 0.7494 0.1552 0.045*
H1N1 0.652 (3) 1.0963 (15) 0.6502 (15) 0.027 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0401 (8) 0.0280 (7) 0.0311 (6) −0.0030 (6) 0.0136 (6) 0.0070 (5)
O2 0.0299 (6) 0.0348 (7) 0.0195 (5) 0.0014 (5) 0.0090 (5) −0.0053 (5)
O3 0.0426 (8) 0.0173 (6) 0.0344 (7) 0.0007 (5) 0.0135 (6) −0.0079 (5)
O4 0.0302 (6) 0.0173 (6) 0.0312 (6) −0.0028 (5) 0.0114 (5) 0.0002 (5)
N1 0.0208 (6) 0.0129 (6) 0.0196 (6) −0.0009 (5) 0.0067 (5) −0.0008 (5)
N2 0.0175 (6) 0.0168 (6) 0.0183 (6) 0.0006 (5) 0.0035 (5) −0.0022 (5)
N3 0.0218 (7) 0.0282 (8) 0.0184 (6) 0.0000 (6) 0.0030 (5) 0.0035 (5)
N4 0.0228 (7) 0.0164 (7) 0.0240 (6) 0.0008 (5) 0.0030 (5) −0.0022 (5)
C1 0.0179 (7) 0.0147 (7) 0.0176 (6) −0.0001 (6) 0.0008 (5) −0.0014 (5)
C2 0.0180 (7) 0.0199 (8) 0.0157 (6) 0.0028 (6) 0.0021 (5) −0.0035 (5)
C3 0.0185 (7) 0.0218 (8) 0.0139 (6) −0.0007 (6) 0.0025 (5) 0.0014 (5)
C4 0.0208 (7) 0.0174 (7) 0.0190 (7) −0.0013 (6) −0.0001 (6) 0.0016 (6)
C5 0.0217 (8) 0.0155 (7) 0.0162 (6) 0.0007 (6) 0.0022 (6) −0.0027 (5)
C6 0.0156 (7) 0.0163 (7) 0.0158 (6) −0.0002 (5) 0.0007 (5) −0.0013 (5)
C7 0.0150 (7) 0.0181 (7) 0.0176 (6) −0.0006 (5) 0.0005 (5) 0.0013 (5)
C8 0.0152 (7) 0.0214 (8) 0.0150 (6) 0.0017 (6) 0.0014 (5) 0.0004 (6)
C9 0.0229 (8) 0.0210 (8) 0.0190 (7) −0.0007 (6) 0.0076 (6) 0.0005 (6)
C10 0.0267 (8) 0.0218 (8) 0.0260 (8) −0.0009 (7) 0.0058 (7) −0.0026 (6)
C11 0.0188 (7) 0.0300 (9) 0.0182 (7) 0.0033 (6) 0.0012 (6) −0.0040 (6)
C12 0.0186 (7) 0.0345 (9) 0.0140 (6) 0.0027 (7) 0.0035 (6) 0.0017 (6)
C13 0.0187 (7) 0.0237 (8) 0.0169 (6) −0.0001 (6) 0.0015 (6) 0.0036 (6)
C14 0.0238 (8) 0.0187 (8) 0.0200 (7) 0.0005 (6) 0.0031 (6) 0.0041 (6)
C15 0.0267 (9) 0.0357 (10) 0.0270 (8) 0.0029 (7) 0.0046 (7) −0.0097 (7)

Geometric parameters (Å, °)

O1—N3 1.2288 (19) C7—C8 1.487 (2)
O2—N3 1.2336 (18) C7—C14 1.505 (2)
O3—N4 1.2291 (16) C8—C9 1.398 (2)
O4—N4 1.2412 (16) C8—C13 1.3992 (19)
N1—C6 1.3515 (18) C9—C10 1.381 (2)
N1—N2 1.3766 (17) C9—H9A 0.9300
N1—H1N1 0.85 (2) C10—C11 1.402 (2)
N2—C7 1.2968 (18) C10—H10A 0.9300
N3—C3 1.4598 (18) C11—C12 1.390 (2)
N4—C1 1.443 (2) C11—C15 1.509 (2)
C1—C2 1.3931 (19) C12—C13 1.395 (2)
C1—C6 1.4267 (19) C12—H12A 0.9300
C2—C3 1.371 (2) C13—H13A 0.9300
C2—H2A 0.9300 C14—H14A 0.9600
C3—C4 1.400 (2) C14—H14B 0.9600
C4—C5 1.368 (2) C14—H14C 0.9600
C4—H4A 0.9300 C15—H15A 0.9600
C5—C6 1.419 (2) C15—H15B 0.9600
C5—H5A 0.9300 C15—H15C 0.9600
C6—N1—N2 120.39 (13) C9—C8—C13 117.79 (13)
C6—N1—H1N1 118.9 (13) C9—C8—C7 120.15 (12)
N2—N1—H1N1 120.7 (13) C13—C8—C7 122.06 (14)
C7—N2—N1 114.86 (13) C10—C9—C8 121.31 (13)
O1—N3—O2 123.78 (13) C10—C9—H9A 119.3
O1—N3—C3 117.74 (13) C8—C9—H9A 119.3
O2—N3—C3 118.47 (13) C9—C10—C11 121.15 (16)
O3—N4—O4 121.96 (13) C9—C10—H10A 119.4
O3—N4—C1 118.81 (12) C11—C10—H10A 119.4
O4—N4—C1 119.23 (12) C12—C11—C10 117.71 (14)
C2—C1—C6 121.45 (14) C12—C11—C15 121.74 (14)
C2—C1—N4 116.36 (13) C10—C11—C15 120.55 (16)
C6—C1—N4 122.18 (12) C11—C12—C13 121.38 (13)
C3—C2—C1 118.99 (13) C11—C12—H12A 119.3
C3—C2—H2A 120.5 C13—C12—H12A 119.3
C1—C2—H2A 120.5 C12—C13—C8 120.65 (15)
C2—C3—C4 121.51 (13) C12—C13—H13A 119.7
C2—C3—N3 118.74 (13) C8—C13—H13A 119.7
C4—C3—N3 119.71 (14) C7—C14—H14A 109.5
C5—C4—C3 119.76 (14) C7—C14—H14B 109.5
C5—C4—H4A 120.1 H14A—C14—H14B 109.5
C3—C4—H4A 120.1 C7—C14—H14C 109.5
C4—C5—C6 121.41 (13) H14A—C14—H14C 109.5
C4—C5—H5A 119.3 H14B—C14—H14C 109.5
C6—C5—H5A 119.3 C11—C15—H15A 109.5
N1—C6—C5 121.14 (13) C11—C15—H15B 109.5
N1—C6—C1 122.05 (14) H15A—C15—H15B 109.5
C5—C6—C1 116.80 (12) C11—C15—H15C 109.5
N2—C7—C8 115.51 (13) H15A—C15—H15C 109.5
N2—C7—C14 123.34 (13) H15B—C15—H15C 109.5
C8—C7—C14 121.14 (12)
C6—N1—N2—C7 169.80 (14) C2—C1—C6—N1 175.87 (15)
O3—N4—C1—C2 1.7 (2) N4—C1—C6—N1 −3.2 (2)
O4—N4—C1—C2 −178.66 (14) C2—C1—C6—C5 −3.1 (2)
O3—N4—C1—C6 −179.24 (15) N4—C1—C6—C5 177.86 (14)
O4—N4—C1—C6 0.4 (2) N1—N2—C7—C8 178.89 (13)
C6—C1—C2—C3 2.0 (2) N1—N2—C7—C14 −2.2 (2)
N4—C1—C2—C3 −178.88 (14) N2—C7—C8—C9 10.5 (2)
C1—C2—C3—C4 0.5 (2) C14—C7—C8—C9 −168.44 (14)
C1—C2—C3—N3 178.22 (13) N2—C7—C8—C13 −169.26 (14)
O1—N3—C3—C2 −178.53 (15) C14—C7—C8—C13 11.8 (2)
O2—N3—C3—C2 0.0 (2) C13—C8—C9—C10 −0.2 (2)
O1—N3—C3—C4 −0.8 (2) C7—C8—C9—C10 −179.92 (15)
O2—N3—C3—C4 177.71 (15) C8—C9—C10—C11 0.2 (3)
C2—C3—C4—C5 −1.9 (2) C9—C10—C11—C12 −0.1 (2)
N3—C3—C4—C5 −179.57 (14) C9—C10—C11—C15 −179.98 (16)
C3—C4—C5—C6 0.7 (2) C10—C11—C12—C13 −0.2 (2)
N2—N1—C6—C5 0.2 (2) C15—C11—C12—C13 179.76 (15)
N2—N1—C6—C1 −178.72 (14) C11—C12—C13—C8 0.2 (2)
C4—C5—C6—N1 −177.27 (15) C9—C8—C13—C12 0.0 (2)
C4—C5—C6—C1 1.7 (2) C7—C8—C13—C12 179.69 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O4 0.85 (2) 1.96 (2) 2.5966 (18) 131.3 (18)
C4—H4A···O4i 0.93 2.51 3.232 (2) 135
C5—H5A···O3i 0.93 2.55 3.4409 (19) 161
C9—H9A···O3i 0.93 2.41 3.295 (2) 158
C14—H14C···Cg1ii 0.96 2.68 3.5635 (17) 154

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2788).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117–123. [DOI] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Fun, H.-K., Kia, R. & Kargar, H. (2009). Acta Cryst. E65, o246–o247. [DOI] [PMC free article] [PubMed]
  7. Guillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85–92.
  8. Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o382. [DOI] [PMC free article] [PubMed]
  9. Lamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem.27, 1521–1529.
  10. Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun.35, 2231–2236.
  11. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  12. Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta Part A, 71, 1251–1260.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Zegota, H. (1999). J. Chromatogr. A, 863, 227–233. [DOI] [PubMed]
  16. Zlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, 853, 487–796.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009957/lh2788sup1.cif

e-65-0o833-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009957/lh2788Isup2.hkl

e-65-0o833-Isup2.hkl (206.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES