Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 28;65(Pt 4):o891. doi: 10.1107/S1600536809010320

2-(Pyrene-1-yl)-1,3-dithiane

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, Annada C Maity b, Nirmal K Das b, Shyamaprasad Goswami b
PMCID: PMC2969099  PMID: 21582599

Abstract

In the title compound, C20H16S2, the pyrene ring is planar [maximum deviation 0.0144 (15) Å] and the dithiane ring adopts a chair conformation. The crystal packing is stabilized by C—H⋯π inter­actions. An intra­molecular C—H⋯S hydrogen bond generates an S(5) ring motif.

Related literature

For thio­nation reactions, see: Goswami & Maity (2008); Goswami et al. (2009); Fun et al. (2009). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For ring puckering analysis, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-0o891-scheme1.jpg

Experimental

Crystal data

  • C20H16S2

  • M r = 320.45

  • Orthorhombic, Inline graphic

  • a = 7.1424 (1) Å

  • b = 8.6016 (1) Å

  • c = 24.5049 (2) Å

  • V = 1505.48 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.36 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.885, T max = 0.962

  • 29712 measured reflections

  • 6424 independent reflections

  • 5501 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.092

  • S = 1.05

  • 6424 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983), 2662 Friedel pairs

  • Flack parameter: 0.03 (5)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010320/at2745sup1.cif

e-65-0o891-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010320/at2745Isup2.hkl

e-65-0o891-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯S2 0.93 2.65 3.0416 (13) 106
C9—H9ACg1i 0.93 2.68 3.4196 (15) 137
C4—H4ACg2ii 0.93 2.98 3.8073 (16) 149
C20—H20ACg3iii 0.97 2.78 3.5339 (15) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C1–C6 ring, Cg2 is the centroid of the C1/C6–C10 ring and Cg3 is the centroid of the C2/C3/C13–C16 ring.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. ACM, NKD and SG thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM and NKD thank the UGC, Government of India, for awarding them each a fellowship.

supplementary crystallographic information

Comment

Thioacetal protection of carbonyl groups is of paramount importance in synthetic organic chemistry and hence the development of novel thionation reactions remains of great interest (Goswami & Maity, 2008; Fun et al., 2009; Goswami et al., 2009). In addition, thioacetals are also utilized as masked acyl anions or masked methylene functions in carbon-carbon bond forming reactions. Here we report the synthesis of 2-pyrene-1-yl-[1,3]dithiane from pyrene-1-aldehyde using BF3—Et2O as catalyst and its crystal structure.

The asymmetric unit of (I), (Fig. 1), consists of one molecule of the title compound. The bond lengths (Allen et al., 1987) and bond angles are found to have normal values. The pyrene ring is essentially planar with the maximum deviation from planarity being 0.0144 (15)Å for atom C15. The dithiane group adopts a chair conformation with the puckering parameters Q = 0.7477 (12) Å, θ = 9.61 (10)° and φ = 66.3 (5)° (Cremer & Pople, 1975).

The crystal packing is stabilized by C—H···π interactions (Table 1). An intramolecular C—H···S hydrogen bonding generates an S(5) ring motif (Bernstein et al., 1995).

Experimental

To a stirred solution of pyrene-1-aldehyde (500 mg., 2.17 mmol) and boron trifluoride etherate (0.5 ml) in dichloromethane (50 ml) cooled at 273 K is added 1,3-propanedithiol (490 mg, 4.5 mmol) dropwise over 15 min with stirring. The mixture is stirred at room temperature for 3 h. The progress of the reaction is monitored by TLC. After completion of the reaction, NaHCO3 solution is added slowly and carefully to neutralize the mixture at room temperature which is then extracted with dichloromethane. The organic layer is dried (anhydrous Na2SO4) and then the solvent is removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10% ethyl acetate in pet ether as eluant to afford 2-pyrene-1-yl-[1,3]dithiane (620 mg, 89%) as a colourless crystalline solid along with other thiane derivatives.

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). 2662 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate the hydrogen bonding.

Crystal data

C20H16S2 F(000) = 672
Mr = 320.45 Dx = 1.414 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9340 reflections
a = 7.1424 (1) Å θ = 2.5–33.7°
b = 8.6016 (1) Å µ = 0.35 mm1
c = 24.5049 (2) Å T = 100 K
V = 1505.48 (3) Å3 Block, colourless
Z = 4 0.36 × 0.17 × 0.11 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6424 independent reflections
Radiation source: fine-focus sealed tube 5501 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 35.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→11
Tmin = 0.885, Tmax = 0.962 k = −13→13
29712 measured reflections l = −39→39

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0807P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.004
6424 reflections Δρmax = 0.48 e Å3
199 parameters Δρmin = −0.27 e Å3
0 restraints Absolute structure: Flack (1983), 2662 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.03 (5)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.38288 (5) 0.10233 (4) 0.977454 (13) 0.01668 (8)
S2 0.68513 (5) −0.07534 (4) 1.037145 (12) 0.01665 (8)
C1 0.6709 (2) −0.12016 (15) 0.77433 (5) 0.0134 (2)
C2 0.73272 (19) −0.07300 (16) 0.82744 (5) 0.0131 (2)
C3 0.9112 (2) −0.00108 (16) 0.83308 (5) 0.0140 (2)
C4 1.0265 (2) 0.01927 (17) 0.78565 (6) 0.0173 (3)
H4A 1.1443 0.0640 0.7894 0.021*
C5 0.9675 (2) −0.02513 (17) 0.73559 (6) 0.0177 (3)
H5A 1.0456 −0.0107 0.7057 0.021*
C6 0.7869 (2) −0.09392 (16) 0.72787 (5) 0.0156 (3)
C7 0.7187 (2) −0.13545 (17) 0.67611 (5) 0.0180 (3)
H7A 0.7932 −0.1193 0.6455 0.022*
C8 0.5425 (2) −0.19998 (17) 0.66994 (6) 0.0190 (3)
H8A 0.4998 −0.2264 0.6353 0.023*
C9 0.4287 (2) −0.22556 (16) 0.71502 (5) 0.0180 (3)
H9A 0.3102 −0.2682 0.7103 0.022*
C10 0.4912 (2) −0.18750 (16) 0.76761 (5) 0.0145 (2)
C11 0.3773 (2) −0.21097 (16) 0.81490 (5) 0.0162 (3)
H11A 0.2612 −0.2588 0.8110 0.019*
C12 0.4341 (2) −0.16537 (17) 0.86520 (5) 0.0155 (3)
H12A 0.3555 −0.1810 0.8950 0.019*
C13 0.61341 (19) −0.09331 (15) 0.87345 (5) 0.0129 (2)
C14 0.6739 (2) −0.03780 (15) 0.92506 (5) 0.0139 (2)
C15 0.8468 (2) 0.03716 (16) 0.92932 (5) 0.0159 (3)
H15A 0.8838 0.0771 0.9629 0.019*
C16 0.9649 (2) 0.05354 (16) 0.88468 (5) 0.0164 (3)
H16A 1.0808 0.1012 0.8890 0.020*
C17 0.54924 (19) −0.05773 (15) 0.97455 (5) 0.0142 (2)
H17A 0.4780 −0.1542 0.9698 0.017*
C18 0.2364 (2) 0.03068 (18) 1.03263 (5) 0.0201 (3)
H18A 0.1366 0.1049 1.0391 0.024*
H18B 0.1791 −0.0663 1.0213 0.024*
C19 0.3411 (2) 0.00340 (18) 1.08623 (5) 0.0184 (3)
H19A 0.3993 0.1001 1.0975 0.022*
H19B 0.2516 −0.0259 1.1142 0.022*
C20 0.4911 (2) −0.12196 (17) 1.08241 (5) 0.0174 (3)
H20A 0.4331 −0.2175 1.0699 0.021*
H20B 0.5404 −0.1410 1.1187 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01679 (16) 0.01854 (16) 0.01470 (14) 0.00372 (13) −0.00236 (11) 0.00034 (12)
S2 0.01684 (15) 0.02099 (17) 0.01214 (13) 0.00328 (14) −0.00233 (11) 0.00104 (12)
C1 0.0165 (6) 0.0116 (5) 0.0120 (5) 0.0012 (5) −0.0008 (4) −0.0008 (4)
C2 0.0142 (6) 0.0121 (6) 0.0131 (5) 0.0004 (5) −0.0012 (4) 0.0010 (4)
C3 0.0131 (6) 0.0128 (6) 0.0160 (5) 0.0010 (5) −0.0021 (5) 0.0015 (4)
C4 0.0148 (7) 0.0169 (6) 0.0203 (6) 0.0002 (5) 0.0011 (5) 0.0020 (5)
C5 0.0171 (7) 0.0185 (7) 0.0177 (6) 0.0019 (5) 0.0038 (5) 0.0024 (5)
C6 0.0174 (6) 0.0145 (6) 0.0148 (5) 0.0021 (5) 0.0004 (4) 0.0012 (5)
C7 0.0236 (7) 0.0177 (7) 0.0128 (6) 0.0025 (5) 0.0003 (5) 0.0001 (5)
C8 0.0256 (7) 0.0182 (7) 0.0133 (6) 0.0021 (6) −0.0034 (5) −0.0019 (5)
C9 0.0216 (7) 0.0158 (6) 0.0166 (6) −0.0008 (5) −0.0035 (5) −0.0020 (5)
C10 0.0178 (6) 0.0124 (6) 0.0134 (5) 0.0001 (5) −0.0017 (5) −0.0019 (4)
C11 0.0159 (6) 0.0169 (6) 0.0159 (6) −0.0033 (5) −0.0015 (5) −0.0010 (5)
C12 0.0159 (6) 0.0164 (6) 0.0141 (5) −0.0028 (5) 0.0002 (5) 0.0007 (5)
C13 0.0153 (6) 0.0103 (5) 0.0130 (5) 0.0004 (5) −0.0015 (4) 0.0001 (4)
C14 0.0151 (6) 0.0133 (6) 0.0133 (5) 0.0012 (5) −0.0021 (5) 0.0003 (4)
C15 0.0181 (7) 0.0157 (6) 0.0138 (5) −0.0010 (5) −0.0043 (5) −0.0001 (5)
C16 0.0147 (6) 0.0160 (6) 0.0186 (6) −0.0016 (5) −0.0027 (5) 0.0016 (5)
C17 0.0163 (6) 0.0148 (6) 0.0115 (5) 0.0014 (5) −0.0024 (4) −0.0008 (4)
C18 0.0154 (6) 0.0269 (7) 0.0179 (6) 0.0021 (6) −0.0001 (5) −0.0018 (5)
C19 0.0212 (7) 0.0212 (7) 0.0128 (5) 0.0008 (6) 0.0005 (5) −0.0010 (5)
C20 0.0207 (7) 0.0179 (7) 0.0136 (5) −0.0005 (6) 0.0001 (5) 0.0018 (5)

Geometric parameters (Å, °)

S1—C18 1.8173 (15) C9—H9A 0.9300
S1—C17 1.8200 (14) C10—C11 1.4301 (19)
S2—C20 1.8200 (15) C11—C12 1.3557 (18)
S2—C17 1.8214 (13) C11—H11A 0.9300
C1—C10 1.418 (2) C12—C13 1.4373 (19)
C1—C6 1.4260 (18) C12—H12A 0.9300
C1—C2 1.4328 (17) C13—C14 1.4191 (17)
C2—C3 1.4239 (19) C14—C15 1.397 (2)
C2—C13 1.4242 (17) C14—C17 1.5144 (18)
C3—C16 1.4024 (18) C15—C16 1.3884 (19)
C3—C4 1.4349 (19) C15—H15A 0.9300
C4—C5 1.3521 (19) C16—H16A 0.9300
C4—H4A 0.9300 C17—H17A 0.9800
C5—C6 1.432 (2) C18—C19 1.5298 (19)
C5—H5A 0.9300 C18—H18A 0.9700
C6—C7 1.4047 (18) C18—H18B 0.9700
C7—C8 1.384 (2) C19—C20 1.523 (2)
C7—H7A 0.9300 C19—H19A 0.9700
C8—C9 1.389 (2) C19—H19B 0.9700
C8—H8A 0.9300 C20—H20A 0.9700
C9—C10 1.4025 (18) C20—H20B 0.9700
C18—S1—C17 98.54 (7) C13—C12—H12A 119.4
C20—S2—C17 97.23 (6) C14—C13—C2 118.82 (12)
C10—C1—C6 119.86 (11) C14—C13—C12 122.81 (12)
C10—C1—C2 120.01 (12) C2—C13—C12 118.34 (11)
C6—C1—C2 120.09 (12) C15—C14—C13 119.42 (12)
C3—C2—C13 120.81 (11) C15—C14—C17 120.80 (11)
C3—C2—C1 119.16 (12) C13—C14—C17 119.77 (12)
C13—C2—C1 120.00 (12) C16—C15—C14 121.66 (12)
C16—C3—C2 118.55 (12) C16—C15—H15A 119.2
C16—C3—C4 122.18 (13) C14—C15—H15A 119.2
C2—C3—C4 119.21 (12) C15—C16—C3 120.69 (13)
C5—C4—C3 121.43 (14) C15—C16—H16A 119.7
C5—C4—H4A 119.3 C3—C16—H16A 119.7
C3—C4—H4A 119.3 C14—C17—S1 109.24 (9)
C4—C5—C6 121.17 (13) C14—C17—S2 111.75 (9)
C4—C5—H5A 119.4 S1—C17—S2 112.20 (7)
C6—C5—H5A 119.4 C14—C17—H17A 107.8
C7—C6—C1 118.64 (13) S1—C17—H17A 107.8
C7—C6—C5 122.46 (12) S2—C17—H17A 107.8
C1—C6—C5 118.89 (11) C19—C18—S1 114.16 (10)
C8—C7—C6 121.05 (13) C19—C18—H18A 108.7
C8—C7—H7A 119.5 S1—C18—H18A 108.7
C6—C7—H7A 119.5 C19—C18—H18B 108.7
C7—C8—C9 120.58 (13) S1—C18—H18B 108.7
C7—C8—H8A 119.7 H18A—C18—H18B 107.6
C9—C8—H8A 119.7 C20—C19—C18 113.57 (11)
C8—C9—C10 120.51 (14) C20—C19—H19A 108.9
C8—C9—H9A 119.7 C18—C19—H19A 108.9
C10—C9—H9A 119.7 C20—C19—H19B 108.9
C9—C10—C1 119.35 (13) C18—C19—H19B 108.9
C9—C10—C11 122.04 (13) H19A—C19—H19B 107.7
C1—C10—C11 118.60 (11) C19—C20—S2 114.65 (10)
C12—C11—C10 121.71 (13) C19—C20—H20A 108.6
C12—C11—H11A 119.1 S2—C20—H20A 108.6
C10—C11—H11A 119.1 C19—C20—H20B 108.6
C11—C12—C13 121.29 (13) S2—C20—H20B 108.6
C11—C12—H12A 119.4 H20A—C20—H20B 107.6
C10—C1—C2—C3 −178.01 (12) C10—C11—C12—C13 −1.0 (2)
C6—C1—C2—C3 −0.47 (19) C3—C2—C13—C14 1.21 (19)
C10—C1—C2—C13 −0.20 (19) C1—C2—C13—C14 −176.56 (12)
C6—C1—C2—C13 177.34 (12) C3—C2—C13—C12 179.43 (12)
C13—C2—C3—C16 −1.84 (19) C1—C2—C13—C12 1.66 (19)
C1—C2—C3—C16 175.95 (13) C11—C12—C13—C14 177.07 (13)
C13—C2—C3—C4 −179.16 (13) C11—C12—C13—C2 −1.1 (2)
C1—C2—C3—C4 −1.37 (19) C2—C13—C14—C15 0.97 (19)
C16—C3—C4—C5 −175.68 (14) C12—C13—C14—C15 −177.17 (13)
C2—C3—C4—C5 1.5 (2) C2—C13—C14—C17 179.86 (12)
C3—C4—C5—C6 0.2 (2) C12—C13—C14—C17 1.7 (2)
C10—C1—C6—C7 0.25 (19) C13—C14—C15—C16 −2.6 (2)
C2—C1—C6—C7 −177.30 (13) C17—C14—C15—C16 178.56 (12)
C10—C1—C6—C5 179.72 (13) C14—C15—C16—C3 1.9 (2)
C2—C1—C6—C5 2.17 (19) C2—C3—C16—C15 0.3 (2)
C4—C5—C6—C7 177.38 (14) C4—C3—C16—C15 177.52 (13)
C4—C5—C6—C1 −2.1 (2) C15—C14—C17—S1 93.99 (13)
C1—C6—C7—C8 0.3 (2) C13—C14—C17—S1 −84.88 (13)
C5—C6—C7—C8 −179.18 (13) C15—C14—C17—S2 −30.77 (16)
C6—C7—C8—C9 −0.2 (2) C13—C14—C17—S2 150.36 (10)
C7—C8—C9—C10 −0.5 (2) C18—S1—C17—C14 171.69 (9)
C8—C9—C10—C1 1.0 (2) C18—S1—C17—S2 −63.82 (9)
C8—C9—C10—C11 179.45 (13) C20—S2—C17—C14 −172.85 (9)
C6—C1—C10—C9 −0.88 (19) C20—S2—C17—S1 64.05 (8)
C2—C1—C10—C9 176.67 (13) C17—S1—C18—C19 59.16 (12)
C6—C1—C10—C11 −179.38 (13) S1—C18—C19—C20 −63.42 (15)
C2—C1—C10—C11 −1.83 (19) C18—C19—C20—S2 65.04 (15)
C9—C10—C11—C12 −175.99 (14) C17—S2—C20—C19 −61.20 (11)
C1—C10—C11—C12 2.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···S2 0.93 2.65 3.0416 (13) 106
C9—H9A···Cg1i 0.93 2.68 3.4196 (15) 137
C4—H4A···Cg2ii 0.93 2.98 3.8073 (16) 149
C20—H20A···Cg3iii 0.97 2.78 3.5339 (15) 135

Symmetry codes: (i) x+3/2, −y−1/2, −z+1; (ii) x+5/2, −y+1/2, −z+1; (iii) −x−1, y−1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2745).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354—1358.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173. [DOI] [PMC free article] [PubMed]
  8. Goswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett.49, 3092–3096.
  9. Goswami, S. P., Maity, A. C., Fun, H. K. & Chantrapromma, S. (2009). Eur. J. Org. Chem. pp. 1417–1426.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010320/at2745sup1.cif

e-65-0o891-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010320/at2745Isup2.hkl

e-65-0o891-Isup2.hkl (180.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES