Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):i29. doi: 10.1107/S1600536809009702

[Cu2(HF2)(H2O)8][AlF6]·2H2O

Matthias Weil a,*
PMCID: PMC2969100  PMID: 21582312

Abstract

The title compound, octaaqua­(hydrogendifluorido)­di­cop­per(II) hexa­fluoridoaluminate dihydrate, was obtained under hydro­thermal conditions. The structure is isotypic with that of the analogous FeIII compound, [Cu2(HF2)(H2O)8][FeF6]·2H2O. The coordination sphere of the CuII atom is formed by one F and three water O atoms at short distances < 2 Å and is augmented by two additional water O atoms at significantly longer distances, leading to a considerably distorted octa­hedral environment. By edge-sharing, these octa­hedra form dimeric [Cu2(HF2)(H2O)8]3+ units that are bonded to [AlF6]3− anions (Inline graphic symmetry) and to crystal lattice water mol­ecules via hydrogen bonds. Besides F—H⋯F inter­actions between the dimeric cationic units, O—H⋯F and O—H⋯O hydrogen bonds (both in part bifurcated) are observed.

Related literature

For the structure of the isotypic FeIII analogue, see: Le Bail & Mercier (2009). For a natural compound in the Cu/Al/F/O/H system, Cu4Al3(OH)14F3(H2O)2 (mineral name khaidarkanite), see: Rastsvetaeva et al. (1997).

Experimental

Crystal data

  • [Cu2(HF2)(H2O)8][AlF6]·2H2O

  • M r = 487.23

  • Triclinic, Inline graphic

  • a = 6.6119 (3) Å

  • b = 7.3410 (3) Å

  • c = 8.3174 (3) Å

  • α = 107.336 (1)°

  • β = 106.715 (1)°

  • γ = 94.454 (1)°

  • V = 363.15 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 293 K

  • 0.18 × 0.14 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.52, T max = 0.80

  • 3899 measured reflections

  • 2013 independent reflections

  • 1952 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.072

  • S = 1.08

  • 2013 reflections

  • 130 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009702/br2101sup1.cif

e-65-00i29-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009702/br2101Isup2.hkl

e-65-00i29-Isup2.hkl (99KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—F4 1.9049 (12)
Cu—O1 1.9441 (14)
Cu—O2 1.9522 (14)
Cu—O3 1.9739 (13)
Cu—O4 2.3463 (15)
Cu—O3i 2.7139 (16)
Al—F1 1.8001 (10)
Al—F2 1.8091 (11)
Al—F3 1.8209 (11)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯F1ii 0.87 (3) 1.74 (3) 2.6042 (17) 171 (4)
O1—H12⋯F2 0.83 (3) 1.86 (3) 2.6899 (18) 176 (4)
O2—H21⋯F1i 0.81 (3) 1.79 (3) 2.6020 (18) 172 (4)
O2—H22⋯O5iii 0.83 (3) 1.86 (3) 2.684 (2) 178 (4)
O3—H31⋯F3i 0.77 (3) 1.82 (3) 2.5877 (18) 178 (4)
O3—H32⋯F3iv 0.79 (3) 1.89 (3) 2.6700 (17) 174 (4)
O4—H41⋯F2v 0.85 (3) 1.95 (3) 2.7840 (19) 169 (4)
O4—H42⋯O4vi 0.67 (3) 2.41 (4) 2.758 (3) 115 (4)
O4—H42⋯O5iv 0.67 (3) 2.41 (4) 2.784 (2) 117 (4)
O5—H51⋯F2vii 0.75 (3) 2.14 (3) 2.8538 (19) 159 (4)
O5—H51⋯F3viii 0.75 (3) 2.50 (3) 3.072 (2) 135 (4)
O5—H52⋯F4 1.04 (3) 1.67 (3) 2.6620 (19) 158 (3)
F4—H6⋯F4v 0.9031 (13) 1.6945 (13) 2.596 (3) 175.27 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

supplementary crystallographic information

Comment

The crystal structure (Fig. 1) of the title compound, [Cu2(HF2)(H2O)8][AlF6].2H2O), is isotypic with [Cu2(HF2)(H2O)8][FeF6].2H2O (Le Bail & Mercier, 2009). Except the Al—F distances (¯d = 1.810 Å versus 1.930 Å for the average Fe—F distance), all other interatomic distances, angles and the hydrogen bond geometry are very similar for the two structures. A detailed description of this structure has been given Le Bail & Mercier (2009).

There is one additional compound described in the Cu/Al/F/O/H system, viz the mineral khaidarkanite with formula Cu4Al3(OH)14F3(H2O)2 (Rastsvetaeva et al., 1997). The latter differs from the title compound as its structure contains distorted [Cu(OH)5(H2O)] octahedra, and [Al(OH)6] and [AlF4(H2O)2] octahedra as building units.

Experimental

AlF3 and CuSO4.5H2O (both Merck, p.a.) were reacted hydrothermally in a 2 M HF solution at 393 K for 4 d. Blue crystals of the title compound with mostly platy habit and up to 0.3 mm in length were obtained.

Refinement

The structure was solved using direct methods. For better comparison with the isotypic FeIII analogue (Le Bail & Mercier, 2009), the atomic coordinates of the latter were used for the final refinement cycles. All H atoms were located from difference Fourier maps. The water H atoms were restrained to have O—H distances of 0.85 Å. Their Uiso values were refined with one common parameter. The position of the H atom of the disordered HF group (set with a site occupation factor of 1/2) was fixed during refinement, but its Uiso value was refined independently.

Figures

Fig. 1.

Fig. 1.

The crystal structure of [Cu2(HF2)(H2O)8][AlF6](H2O)2 in polyhedral representation projected along [010]. Colour key: O atoms white, F atoms green, H atoms are grey, [CuO5F] octahedra are blue, [AlF6] octahedra are red. Displacement ellipsoids are given at the 74% probability level; H atoms are displayed as spheres of arbitrary radius. Hydrogen bonds are indicated with green lines. Note that for clarity only one of the disordered H atoms bonded to the F atom is shown.

Crystal data

[Cu2(HF2)(H2O)8][AlF6]·2H2O Z = 1
Mr = 487.23 F(000) = 244
Triclinic, P1 Dx = 2.228 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6119 (3) Å Cell parameters from 3443 reflections
b = 7.3410 (3) Å θ = 2.7–30.0°
c = 8.3174 (3) Å µ = 3.12 mm1
α = 107.336 (1)° T = 293 K
β = 106.715 (1)° Plate, blue
γ = 94.454 (1)° 0.18 × 0.14 × 0.06 mm
V = 363.15 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2013 independent reflections
Radiation source: fine-focus sealed tube 1952 reflections with I > 2σ(I)
graphite Rint = 0.019
ω scans θmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→9
Tmin = 0.52, Tmax = 0.80 k = −10→10
3899 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1517P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
2013 reflections Δρmax = 0.44 e Å3
130 parameters Δρmin = −0.54 e Å3
10 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.059 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu 0.60564 (3) 0.55637 (3) 0.23399 (2) 0.01836 (10)
Al 0.0000 0.0000 0.0000 0.01611 (15)
F1 0.21626 (18) −0.02274 (17) −0.09157 (16) 0.0272 (2)
F2 0.19296 (18) 0.12317 (17) 0.21936 (15) 0.0282 (2)
F3 −0.02395 (19) 0.23071 (16) −0.03724 (18) 0.0278 (2)
F4 0.4323 (2) 0.5863 (2) 0.38450 (18) 0.0354 (3)
O1 0.5678 (2) 0.2833 (2) 0.2103 (2) 0.0289 (3)
O2 0.6023 (3) 0.8243 (2) 0.2410 (2) 0.0266 (3)
O3 0.7505 (2) 0.5080 (2) 0.0522 (2) 0.0248 (3)
O4 0.9127 (2) 0.6621 (2) 0.4883 (2) 0.0278 (3)
O5 0.2346 (3) 0.8900 (2) 0.4430 (2) 0.0296 (3)
H11 0.636 (6) 0.198 (5) 0.160 (5) 0.055 (3)*
H12 0.456 (5) 0.233 (5) 0.218 (5) 0.055 (3)*
H21 0.668 (6) 0.881 (5) 0.196 (5) 0.055 (3)*
H22 0.653 (6) 0.910 (5) 0.340 (4) 0.055 (3)*
H31 0.833 (6) 0.586 (5) 0.050 (5) 0.055 (3)*
H32 0.811 (6) 0.421 (5) 0.027 (5) 0.055 (3)*
H41 0.885 (6) 0.716 (5) 0.583 (4) 0.055 (3)*
H42 1.009 (5) 0.644 (5) 0.483 (5) 0.055 (3)*
H51 0.213 (6) 0.925 (5) 0.365 (4) 0.055 (3)*
H52 0.344 (6) 0.796 (5) 0.435 (5) 0.055 (3)*
H6 0.4722 0.5226 0.4629 0.026 (12)* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.02240 (14) 0.01519 (13) 0.02078 (14) 0.00360 (8) 0.01130 (9) 0.00657 (9)
Al 0.0176 (3) 0.0141 (3) 0.0194 (3) 0.0027 (2) 0.0093 (2) 0.0063 (2)
F1 0.0279 (5) 0.0262 (5) 0.0377 (6) 0.0082 (4) 0.0226 (5) 0.0129 (5)
F2 0.0273 (5) 0.0301 (6) 0.0225 (5) −0.0007 (4) 0.0070 (4) 0.0049 (4)
F3 0.0304 (5) 0.0188 (5) 0.0424 (6) 0.0066 (4) 0.0175 (5) 0.0161 (5)
F4 0.0481 (7) 0.0379 (7) 0.0378 (7) 0.0205 (6) 0.0281 (6) 0.0211 (5)
O1 0.0280 (7) 0.0161 (6) 0.0471 (8) 0.0040 (5) 0.0213 (6) 0.0084 (6)
O2 0.0394 (7) 0.0176 (6) 0.0273 (6) 0.0042 (5) 0.0164 (6) 0.0091 (5)
O3 0.0284 (6) 0.0189 (6) 0.0333 (7) 0.0049 (5) 0.0200 (6) 0.0079 (5)
O4 0.0262 (6) 0.0276 (7) 0.0280 (6) 0.0050 (5) 0.0086 (5) 0.0073 (5)
O5 0.0379 (7) 0.0279 (7) 0.0266 (6) 0.0090 (6) 0.0134 (6) 0.0108 (5)

Geometric parameters (Å, °)

Cu—F4 1.9049 (12) Al—F1 1.8001 (10)
Cu—O1 1.9441 (14) Al—F1ii 1.8001 (10)
Cu—O2 1.9522 (14) Al—F2ii 1.8091 (11)
Cu—O3 1.9739 (13) Al—F2 1.8091 (11)
Cu—O4 2.3463 (15) Al—F3ii 1.8209 (11)
Cu—O3i 2.7139 (16) Al—F3 1.8209 (11)
Cu—Cui 3.5440 (4) F4—F4iii 2.596 (3)
F4—Cu—O1 86.72 (6) F4iii—F4—O1 75.78 (7)
F4—Cu—O2 90.07 (6) Cu—F4—O5 120.66 (7)
O1—Cu—O2 172.31 (6) F4iii—F4—O5 123.74 (8)
F4—Cu—O3 172.54 (6) O1—F4—O5 159.76 (8)
O1—Cu—O3 91.01 (6) Cu—F4—O2 45.67 (4)
O2—Cu—O3 91.29 (6) F4iii—F4—O2 138.16 (10)
F4—Cu—O4 89.18 (6) O1—F4—O2 92.70 (6)
O1—Cu—O4 97.22 (6) O5—F4—O2 75.99 (6)
O2—Cu—O4 89.72 (6) H11—O1—H12 113 (4)
O3—Cu—O4 98.16 (6) Cu—O2—Cui 65.57 (4)
F4—Cu—O3i 89.91 (5) F4—O2—Cui 93.18 (5)
O1—Cu—O3i 91.35 (6) Cu—O2—H21 126 (3)
O2—Cu—O3i 81.64 (6) F4—O2—H21 169 (3)
O3—Cu—O3i 83.04 (5) Cui—O2—H21 83 (3)
O4—Cu—O3i 171.31 (5) Cu—O2—H22 117 (3)
F1—Al—F1ii 180.00 (8) F4—O2—H22 91 (3)
F1—Al—F2ii 90.44 (5) Cui—O2—H22 176 (3)
F1ii—Al—F2ii 89.56 (5) H21—O2—H22 92 (4)
F1—Al—F2 89.56 (5) Cu—O3—Cui 96.96 (5)
F1ii—Al—F2 90.44 (5) Cu—O3—H31 123 (3)
F2ii—Al—F2 180.0 Cui—O3—H31 107 (3)
F1—Al—F3ii 89.97 (5) Cu—O3—H32 125 (3)
F1ii—Al—F3ii 90.03 (5) Cui—O3—H32 106 (3)
F2ii—Al—F3ii 90.57 (6) H31—O3—H32 97 (4)
F2—Al—F3ii 89.43 (6) Cu—O4—H41 113 (2)
F1—Al—F3 90.03 (5) F4—O4—H41 75 (3)
F1ii—Al—F3 89.97 (5) Cu—O4—H42 121 (3)
F2ii—Al—F3 89.43 (6) F4—O4—H42 156 (3)
F2—Al—F3 90.57 (6) H41—O4—H42 126 (4)
F3ii—Al—F3 180.00 (8) F4—O5—H51 110 (3)
Cu—F4—F4iii 109.26 (8) H51—O5—H52 109 (3)
Cu—F4—O1 47.26 (4)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H11···F1iv 0.87 (3) 1.74 (3) 2.6042 (17) 171 (4)
O1—H12···F2 0.83 (3) 1.86 (3) 2.6899 (18) 176 (4)
O2—H21···F1i 0.81 (3) 1.79 (3) 2.6020 (18) 172 (4)
O2—H22···O5v 0.83 (3) 1.86 (3) 2.684 (2) 178 (4)
O3—H31···F3i 0.77 (3) 1.82 (3) 2.5877 (18) 178 (4)
O3—H32···F3vi 0.79 (3) 1.89 (3) 2.6700 (17) 174 (4)
O4—H41···F2iii 0.85 (3) 1.95 (3) 2.7840 (19) 169 (4)
O4—H42···O4vii 0.67 (3) 2.41 (4) 2.758 (3) 115 (4)
O4—H42···O5vi 0.67 (3) 2.41 (4) 2.784 (2) 117 (4)
O5—H51···F2viii 0.75 (3) 2.14 (3) 2.8538 (19) 159 (4)
O5—H51···F3ix 0.75 (3) 2.50 (3) 3.072 (2) 135 (4)
O5—H52···F4 1.04 (3) 1.67 (3) 2.6620 (19) 158 (3)
F4—H6···F4iii 0.9031 (13) 1.6945 (13) 2.596 (3) 175.27 (5)

Symmetry codes: (iv) −x+1, −y, −z; (i) −x+1, −y+1, −z; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z; (iii) −x+1, −y+1, −z+1; (vii) −x+2, −y+1, −z+1; (viii) x, y+1, z; (ix) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2101).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dowty, E. (2006). ATOMS for Windows Shape Software, Kingsport, Tennessee, USA.
  3. Le Bail, A. & Mercier, A.-M. (2009). Acta Cryst. E65, i23–i24. [DOI] [PMC free article] [PubMed]
  4. Rastsvetaeva, R. K., Chukanov, N. V. & Karpenko, V. Yu. (1997). Dokl. Akad. Nauk, 353, 354-357.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809009702/br2101sup1.cif

e-65-00i29-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009702/br2101Isup2.hkl

e-65-00i29-Isup2.hkl (99KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES