Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 31;65(Pt 4):o938. doi: 10.1107/S1600536809011246

3-Anilinothio­carbonyl-4-hydroxy­chromen-2-one

Rajni Kant a,*, Lovely Sarmal a, Sabeta Kohli a, Kamni b, Mehtab Parveen c
PMCID: PMC2969103  PMID: 21582638

Abstract

The geometrical parameters of the title compound, C16H11NO3S, are in the usual ranges. The two aromatic residues are not coplanar and are twisted by a dihedral angle of 66.63 (6)°. The crystal structure is stabilized by N—H⋯O and O—H⋯S inter­actions.

Related literature

For literature on coumarins, see: Campbell (1959); Murray et al. (1982); Wolska et al. (1990); Harvey (1999); Matern et al. (1999); Yang et al. (1992); Tsai et al. (2000).graphic file with name e-65-0o938-scheme1.jpg

Experimental

Crystal data

  • C16H11NO3S

  • M r = 297.33

  • Monoclinic, Inline graphic

  • a = 14.8059 (9) Å

  • b = 5.5245 (4) Å

  • c = 17.4438 (12) Å

  • β = 109.091 (7)°

  • V = 1348.34 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 11450 measured reflections

  • 4408 independent reflections

  • 2320 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.134

  • S = 1.01

  • 4408 reflections

  • 235 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011246/jh2075sup1.cif

e-65-0o938-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011246/jh2075Isup2.hkl

e-65-0o938-Isup2.hkl (211.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.96 (2) 1.77 (2) 2.5923 (19) 141 (2)
O3—H3A⋯S1 1.05 (2) 1.81 (3) 2.8163 (15) 159 (2)

Acknowledgments

The authors are thankful to the Department of Science and Technology of the Government of India for funding under research project SR/S2/CMP-47/2003.

supplementary crystallographic information

Comment

Coumarins belong to a group of compounds known as benzopyrones, all of which consist of a benzene ring joined to a pyrone moiety.

Coumarins are found to have a wide spectrum of biological activity, e.g. antithronbotic effect, vascodilating effect on vessel, tonic influence on capillary blood vessels, reduction of blood pressure, antispastic and photosensitizing effect (Wolska et al., 1990).

Interestingly, coumarins exhibit inhibitory effect on DNA gyrase, which may be linked to anti-HIV (human immuno deficiency virus) activity (Matern et al., 1999).

Coumarins are also found to exhibit anti-malarial activity (Yang et al., 1992).

Recently Collinin, isolated from Zathoxylum Schinifolium, has been found to exhibit anti-HBV (hepatitis B virus) activity (Tsai et al., 2000).

Owing to the general importance of these coumarin analogues we report herein the synthesis and crystal structure of a new coumarin 3-anilinothiocarbonyl-4-hydroxychromen-2-one, (I).

The geometrical parameters (i.e. bond distances and angles) of (I) are in the usual ranges. The two aromatic residues are not coplanar and are twisted by a dihedral angle of 66.63 (6)°. The crystal structure is stabilized by X—H···A interactions.

Experimental

Scheme1: The mixture of 4-hydroxy coumarin, phenylisothiocyanate was taken in THF.The base Na2CO3 was also added to it. The reaction mixture was refluxed on water bath for three hours. Progress of the reaction was monitored by TLC. After completion the reaction mixture was poured into water and worked up with ether and then in ethyl acetate. The ether layer showed the presence of three compounds from which the title compound (I) was separated by column chromatography followed by crystallization from chloroform-methanol as white crystalline solid. Melting point: 421–423 K.

Refinement

All H atoms were located from difference Fourier map and refined isotopically with distance restraints 0.86–1.05 Å.

Figures

Fig. 1.

Fig. 1.

View of (I) (50% probability displacement ellipsoids)

Fig. 2.

Fig. 2.

Depiction of X—H···A interactions in the title compound(I)

Fig. 3.

Fig. 3.

The synthesis of the title compound.

Crystal data

C16H11NO3S F(000) = 616
Mr = 297.33 Dx = 1.465 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.8059 (9) Å Cell parameters from 2320 reflections
b = 5.5245 (4) Å θ = 2.9–32.3°
c = 17.4438 (12) Å µ = 0.25 mm1
β = 109.091 (7)° T = 293 K
V = 1348.34 (16) Å3 Rectangular, yellow
Z = 4 0.30 × 0.24 × 0.18 mm

Data collection

Oxford Diffraction Xcalibur diffractometer 2320 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
graphite θmax = 32.3°, θmin = 2.9°
ω–2θ scans h = −20→21
11450 measured reflections k = −8→5
4408 independent reflections l = −25→26

Refinement

Refinement on F2 0 constraints
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0645P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.24 e Å3
4408 reflections Δρmin = −0.23 e Å3
235 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0079 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H3 −0.2431 (14) −0.089 (4) −0.0463 (12) 0.058 (6)*
H1 −0.1035 (12) 0.344 (4) 0.1367 (11) 0.044 (5)*
H4 −0.1108 (14) −0.346 (4) −0.0190 (11) 0.053 (6)*
H2 −0.2420 (15) 0.255 (4) 0.0323 (13) 0.060 (6)*
H1A 0.2933 (15) −0.272 (4) 0.2272 (13) 0.066 (7)*
H14 0.6547 (16) −0.057 (4) 0.4609 (13) 0.074 (6)*
H12 0.4091 (17) −0.402 (5) 0.3868 (13) 0.080 (8)*
H15 0.5906 (18) 0.239 (5) 0.3553 (16) 0.095 (9)*
H16 0.4290 (17) 0.200 (5) 0.2686 (16) 0.084 (8)*
H13 0.5615 (19) −0.365 (5) 0.4674 (16) 0.099 (9)*
H3A 0.127 (2) 0.298 (5) 0.2783 (16) 0.102 (9)*
S1 0.24977 (3) 0.22219 (9) 0.33460 (3) 0.05005 (18)
C8 0.14300 (10) −0.0442 (3) 0.20025 (9) 0.0319 (3)
O1 0.04858 (8) −0.2950 (2) 0.08806 (7) 0.0400 (3)
O2 0.19660 (8) −0.3959 (2) 0.14831 (7) 0.0497 (3)
C10 0.23535 (11) 0.0021 (3) 0.26441 (9) 0.0349 (4)
O3 0.06066 (9) 0.2954 (2) 0.23189 (8) 0.0470 (3)
C6 −0.02392 (11) 0.0583 (3) 0.12239 (9) 0.0329 (4)
C7 0.06394 (11) 0.1047 (3) 0.18839 (9) 0.0338 (4)
N1 0.30848 (10) −0.1395 (3) 0.26561 (9) 0.0452 (4)
C5 −0.02859 (11) −0.1432 (3) 0.07446 (9) 0.0333 (4)
C1 −0.10418 (12) 0.2061 (3) 0.10584 (12) 0.0423 (4)
C4 −0.10991 (12) −0.2023 (4) 0.01022 (11) 0.0420 (4)
C9 0.13442 (12) −0.2508 (3) 0.14694 (10) 0.0351 (4)
C11 0.40436 (12) −0.1113 (4) 0.32054 (11) 0.0449 (4)
C2 −0.18535 (13) 0.1526 (4) 0.04245 (12) 0.0494 (5)
C3 −0.18805 (13) −0.0511 (4) −0.00491 (11) 0.0484 (5)
C16 0.45938 (15) 0.0776 (4) 0.31041 (15) 0.0619 (6)
C12 0.44115 (17) −0.2784 (5) 0.37918 (17) 0.0725 (7)
C15 0.55294 (16) 0.0988 (5) 0.36243 (18) 0.0735 (7)
C14 0.58922 (15) −0.0672 (5) 0.42249 (17) 0.0769 (8)
C13 0.53483 (19) −0.2533 (5) 0.4308 (2) 0.0947 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0422 (3) 0.0555 (3) 0.0476 (3) −0.0063 (2) 0.00809 (19) −0.0194 (2)
C8 0.0336 (8) 0.0328 (8) 0.0296 (8) −0.0035 (7) 0.0105 (6) −0.0054 (7)
O1 0.0368 (6) 0.0394 (7) 0.0388 (6) 0.0011 (5) 0.0053 (5) −0.0093 (5)
O2 0.0435 (7) 0.0478 (8) 0.0498 (7) 0.0107 (6) 0.0044 (5) −0.0145 (6)
C10 0.0351 (8) 0.0355 (9) 0.0351 (8) −0.0044 (7) 0.0128 (6) −0.0023 (7)
O3 0.0429 (7) 0.0470 (8) 0.0490 (7) 0.0045 (6) 0.0122 (6) −0.0170 (6)
C6 0.0341 (8) 0.0331 (9) 0.0323 (8) −0.0012 (7) 0.0119 (6) 0.0017 (7)
C7 0.0366 (8) 0.0337 (9) 0.0335 (8) −0.0050 (7) 0.0149 (6) −0.0015 (7)
N1 0.0335 (7) 0.0466 (9) 0.0490 (9) −0.0002 (7) 0.0047 (6) −0.0124 (8)
C5 0.0334 (8) 0.0325 (9) 0.0344 (8) −0.0012 (7) 0.0113 (6) 0.0034 (7)
C1 0.0434 (10) 0.0391 (10) 0.0451 (10) 0.0058 (8) 0.0154 (8) 0.0049 (9)
C4 0.0413 (9) 0.0444 (11) 0.0373 (9) −0.0086 (8) 0.0087 (7) −0.0007 (8)
C9 0.0342 (8) 0.0365 (9) 0.0338 (8) −0.0028 (7) 0.0099 (6) −0.0032 (7)
C11 0.0334 (8) 0.0442 (11) 0.0521 (11) −0.0010 (8) 0.0072 (8) −0.0101 (9)
C2 0.0370 (9) 0.0545 (13) 0.0525 (11) 0.0086 (9) 0.0088 (8) 0.0123 (10)
C3 0.0347 (9) 0.0594 (13) 0.0439 (10) −0.0065 (9) 0.0030 (8) 0.0094 (9)
C16 0.0458 (11) 0.0608 (14) 0.0740 (15) −0.0072 (11) 0.0124 (10) 0.0046 (12)
C12 0.0509 (12) 0.0590 (15) 0.0860 (17) −0.0148 (11) −0.0073 (11) 0.0140 (13)
C15 0.0425 (11) 0.0662 (16) 0.110 (2) −0.0167 (12) 0.0226 (12) −0.0133 (15)
C14 0.0402 (11) 0.0640 (16) 0.103 (2) −0.0036 (11) −0.0091 (12) −0.0183 (15)
C13 0.0616 (15) 0.0752 (18) 0.105 (2) −0.0106 (14) −0.0302 (15) 0.0220 (16)

Geometric parameters (Å, °)

S1—C10 1.6889 (17) C1—H1 0.929 (19)
S1—H3A 1.81 (3) C4—C3 1.381 (3)
C8—C7 1.390 (2) C4—H4 0.94 (2)
C8—C9 1.452 (2) C11—C12 1.353 (3)
C8—C10 1.479 (2) C11—C16 1.370 (3)
O1—C9 1.3696 (19) C2—C3 1.389 (3)
O1—C5 1.3737 (19) C2—H2 0.98 (2)
O2—C9 1.215 (2) C3—H3 0.919 (19)
C10—N1 1.330 (2) C16—C15 1.391 (3)
O3—C7 1.308 (2) C16—H16 0.99 (3)
O3—H3A 1.05 (3) C12—C13 1.392 (3)
C6—C5 1.381 (2) C12—H12 0.86 (3)
C6—C1 1.392 (2) C15—C14 1.363 (4)
C6—C7 1.450 (2) C15—H15 0.98 (3)
N1—C11 1.438 (2) C14—C13 1.343 (4)
N1—H1A 0.97 (2) C14—H14 0.98 (2)
C5—C4 1.389 (2) C13—H13 0.88 (3)
C1—C2 1.373 (3)
C10—S1—H3A 84.7 (8) O2—C9—O1 114.13 (14)
C7—C8—C9 118.50 (14) O2—C9—C8 126.81 (15)
C7—C8—C10 122.40 (14) O1—C9—C8 119.06 (14)
C9—C8—C10 119.10 (14) C12—C11—C16 120.52 (19)
C9—O1—C5 122.43 (13) C12—C11—N1 119.68 (18)
N1—C10—C8 117.17 (15) C16—C11—N1 119.71 (18)
N1—C10—S1 120.18 (12) C1—C2—C3 120.06 (18)
C8—C10—S1 122.65 (12) C1—C2—H2 119.6 (13)
C7—O3—H3A 104.8 (15) C3—C2—H2 120.3 (12)
C5—C6—C1 118.51 (15) C4—C3—C2 121.14 (17)
C5—C6—C7 118.51 (14) C4—C3—H3 119.0 (13)
C1—C6—C7 122.98 (16) C2—C3—H3 119.9 (13)
O3—C7—C8 125.40 (14) C11—C16—C15 119.2 (2)
O3—C7—C6 114.13 (14) C11—C16—H16 118.0 (14)
C8—C7—C6 120.45 (15) C15—C16—H16 122.7 (15)
C10—N1—C11 124.58 (16) C11—C12—C13 119.4 (2)
C10—N1—H1A 115.4 (13) C11—C12—H12 123.2 (15)
C11—N1—H1A 120.0 (13) C13—C12—H12 117.4 (15)
O1—C5—C6 120.90 (14) C14—C15—C16 120.2 (2)
O1—C5—C4 116.65 (15) C14—C15—H15 121.9 (15)
C6—C5—C4 122.44 (15) C16—C15—H15 117.9 (15)
C2—C1—C6 120.24 (19) C13—C14—C15 119.9 (2)
C2—C1—H1 118.9 (11) C13—C14—H14 117.6 (13)
C6—C1—H1 120.8 (11) C15—C14—H14 122.5 (13)
C3—C4—C5 117.60 (18) C14—C13—C12 120.8 (3)
C3—C4—H4 123.0 (12) C14—C13—H13 118.1 (18)
C5—C4—H4 119.3 (12) C12—C13—H13 120.9 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.96 (2) 1.77 (2) 2.5923 (19) 141 (2)
O3—H3A···S1 1.05 (2) 1.81 (3) 2.8163 (15) 159 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2075).

References

  1. Campbell, N. (1959). Chemistry of Carbon Compounds, edited by E. H. Rodd, Vol. 6, Part 4B, p. 875. Amsterdam: Elsevier.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Harvey, A. L. (1999). Trends Pharmacol. Sci.20, 196–198. [DOI] [PubMed]
  5. Matern, U., Luer, P. & Kreusch, D. (1999). Biosynthesis of Coumarins In Comprehensive Natural Products Chemistry, Vol 1, pp. 623–637. Amsterdam: Elsevier.
  6. Murray, R. D. H., Mendez, J. & Brown, S. A. (1982). In The Natural Coumarins – Occurance Chemistry and Biochemistry New York: Wiley & Sons.
  7. Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tsai, I. L., Lin, W. Y., Teng, C. M., Ishikawa, T., Doung, S. L., Huang, M. W., Chen, Y. C. & Chen, I. S. (2000). Planta Med.66, 616–618 [DOI] [PubMed]
  10. Wolska, I., Borowiak, T. & Gawron, M. (1990). Acta Cryst. C46, 2146–2148.
  11. Yang, Y. Z., Ranz, A., Pan, H. Z., Zhang, Z. H., Lin, X. B. & Meshnick, S. R. (1992). Med. Hyg 46, 15–20. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011246/jh2075sup1.cif

e-65-0o938-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011246/jh2075Isup2.hkl

e-65-0o938-Isup2.hkl (211.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES