Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 25;65(Pt 4):o839. doi: 10.1107/S160053680900909X

Tris(3-amino­phen­yl)phosphine oxide ethanol solvate

Jun Han a, Wenguang Li b, Shufang Wang b, Juli Jiang a,*
PMCID: PMC2969104  PMID: 21582558

Abstract

The title compound crystallized as an ethanol solvate, C18H18N3OP·C2H6O. It is the reduction product of tris­(3-nitro­phen­yl)phosphine oxide. In the crystal, there are inter­molecular N—H⋯O hydrogen bonds between neighbouring tris­(3-amino­phen­yl)phosphine oxide mol­ecules and O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecule.

Related literature

The structure of tris­(3-nitro­phen­yl)phosphine oxide is described by Jean-Noël et al. (2004). For literature on related compounds, see: Michaelis et al. (1885); Dressick et al. (2000); Hessler & Stelzer (1997).graphic file with name e-65-0o839-scheme1.jpg

Experimental

Crystal data

  • C18H18N3OP·C2H6O

  • M r = 369.39

  • Triclinic, Inline graphic

  • a = 9.1046 (13) Å

  • b = 10.7595 (15) Å

  • c = 12.020 (3) Å

  • α = 109.131 (3)°

  • β = 94.245 (3)°

  • γ = 114.028 (2)°

  • V = 986.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.35 × 0.34 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.947, T max = 0.954

  • 5014 measured reflections

  • 3420 independent reflections

  • 1659 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.149

  • S = 0.85

  • 3420 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900909X/pk2158sup1.cif

e-65-0o839-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900909X/pk2158Isup2.hkl

e-65-0o839-Isup2.hkl (167.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.86 2.62 3.469 (6) 168
N2—H2B⋯O1ii 0.86 2.14 2.987 (4) 168
N2—H2C⋯O2iii 0.86 2.23 3.089 (5) 173
O2—H2⋯O1 0.82 1.85 2.672 (3) 178

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the NSFC (grant No. 20602017), the Program for New Century Excellent Talents in University (grant No. NCET-07-0425) and the Natural Science Foundation of Jiangsu (grant No. BK 2008259).

supplementary crystallographic information

Comment

Arylphosphines have been investigated extensively as ionic ligands for catalytically active transition metals in aqueous solution (Hessler & Stelzer, 1997), as starting materials for the molecular fabrication of materials (Dressick et al., 2000) and so on. As early as 1885, tris(3-aminophenyl)phosphine oxide had been synthesized in the Sn/HCl system but with low yield (Michaelis et al., 1885). The molecules of the title compound crystallized as an ethanol solvate (Fig. 1). Adjacent molecules are linked via intermolecular O—H···O and N—H···O interactions, such as O2—H2···O1, N2—H2B···O1, N2—H2C···O2 and N1—H1A···O2 from a neighboring molecule (Fig. 2).

Experimental

The precursor, tris(3-nitrophenyl)phosphine oxide (1.032 g, 2.5 mmol), was added to a mixture of ethanol (30 ml), THF (30 ml), hydrazine hydrate (10 ml) and a catalytic amount of Raney Ni in a 100 ml flask. The mixture was heated to reflux and reaction progress was monitored by TLC. The pure product was obtained as colorless crystals suitable for X-ray analysis after removing most of the solvent and without further purification (yield > 99%).

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C), (1.5Ueq(C) for methyl groups), and with a distance of O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N). Although the diffraction data were rather weak, the structure is unambiguous, nevertheless, the ethanol solvent molecule is rather poorly defined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis.

Crystal data

C18H18N3OP·C2H6O Z = 2
Mr = 369.39 F(000) = 392
Triclinic, P1 Dx = 1.244 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1046 (13) Å Cell parameters from 706 reflections
b = 10.7595 (15) Å θ = 2.6–19.5°
c = 12.020 (3) Å µ = 0.16 mm1
α = 109.131 (3)° T = 293 K
β = 94.245 (3)° Prism, colorless
γ = 114.028 (2)° 0.35 × 0.34 × 0.30 mm
V = 986.3 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3420 independent reflections
Radiation source: fine-focus sealed tube 1659 reflections with I > 2σ(I)
graphite Rint = 0.058
φ and ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.947, Tmax = 0.954 k = −11→12
5014 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0599P)2] where P = (Fo2 + 2Fc2)/3
3420 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.32847 (11) 0.46681 (10) 0.24048 (9) 0.040
O1 0.2533 (3) 0.4519 (2) 0.3452 (2) 0.048
O2 0.0137 (3) 0.2243 (3) 0.3724 (3) 0.0692 (9)
H2 0.0879 0.2929 0.3632 0.104*
C12 0.5751 (4) 0.7116 (4) 0.2172 (3) 0.0450 (9)
H12 0.6148 0.6475 0.1749 0.054*
C7 0.4373 (4) 0.6580 (4) 0.2618 (3) 0.0398 (9)
C1 0.1745 (4) 0.3739 (4) 0.0993 (3) 0.0430 (9)
C13 0.4720 (4) 0.3909 (3) 0.2210 (3) 0.0380 (9)
C17 0.6849 (4) 0.3539 (4) 0.3165 (3) 0.046
C11 0.6559 (4) 0.8607 (4) 0.2346 (3) 0.049
C18 0.5679 (4) 0.4064 (3) 0.3238 (3) 0.044
H18 0.5539 0.4528 0.3996 0.052*
N1 0.7909 (4) 0.9160 (4) 0.1905 (3) 0.076
H1A 0.8373 1.0081 0.2021 0.091*
H1B 0.8298 0.8588 0.1510 0.091*
C14 0.4895 (4) 0.3209 (4) 0.1081 (3) 0.048
H14 0.4243 0.3095 0.0387 0.058*
C16 0.7007 (4) 0.2837 (4) 0.2010 (3) 0.052
H16 0.7776 0.2472 0.1931 0.062*
C6 0.0464 (4) 0.2340 (4) 0.0766 (3) 0.0486 (10)
H6 0.0446 0.1908 0.1324 0.058*
C5 −0.0779 (4) 0.1596 (4) −0.0291 (4) 0.057
C2 0.1779 (5) 0.4355 (4) 0.0146 (4) 0.0548 (11)
H2A 0.2642 0.5277 0.0288 0.066*
C10 0.5934 (5) 0.9530 (4) 0.2983 (4) 0.0592 (12)
H10 0.6457 1.0527 0.3111 0.071*
N2 0.7780 (4) 0.3664 (4) 0.4182 (3) 0.0764 (11)
H2B 0.7646 0.4074 0.4886 0.092*
H2C 0.8497 0.3332 0.4116 0.092*
C9 0.4574 (5) 0.9015 (4) 0.3424 (4) 0.0599 (11)
H9 0.4176 0.9657 0.3844 0.072*
C8 0.3784 (5) 0.7539 (4) 0.3248 (3) 0.0534 (10)
H8 0.2857 0.7189 0.3553 0.064*
C15 0.6044 (4) 0.2679 (4) 0.0989 (3) 0.056
H15 0.6170 0.2208 0.0228 0.068*
C3 0.0530 (5) 0.3608 (5) −0.0918 (4) 0.0677 (13)
H3 0.0555 0.4027 −0.1486 0.081*
N3 −0.2044 (5) 0.0239 (4) −0.0519 (4) 0.106
H3A −0.2077 −0.0164 −0.0005 0.127*
H3B −0.2811 −0.0214 −0.1178 0.127*
C4 −0.0726 (5) 0.2259 (5) −0.1117 (4) 0.0687 (13)
H4 −0.1568 0.1768 −0.1822 0.082*
C20 0.0756 (6) 0.2038 (6) 0.4755 (5) 0.0963 (19)
H20A 0.1265 0.2969 0.5458 0.116*
H20B −0.0150 0.1328 0.4941 0.116*
C19 0.1946 (8) 0.1515 (7) 0.4477 (6) 0.147 (3)
H19A 0.1414 0.0555 0.3825 0.221*
H19B 0.2426 0.1447 0.5180 0.221*
H19C 0.2800 0.2189 0.4239 0.221*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.041 0.039 0.040 0.017 0.012 0.016
O1 0.051 0.050 0.044 0.021 0.021 0.021
O2 0.0604 (18) 0.062 (2) 0.081 (2) 0.0167 (15) 0.0085 (17) 0.0396 (17)
C12 0.050 (2) 0.036 (2) 0.042 (2) 0.0173 (19) 0.0080 (19) 0.0098 (18)
C7 0.043 (2) 0.037 (2) 0.037 (2) 0.0159 (18) 0.0056 (18) 0.0149 (18)
C1 0.043 (2) 0.047 (2) 0.041 (2) 0.023 (2) 0.0107 (18) 0.0159 (19)
C13 0.041 (2) 0.030 (2) 0.039 (2) 0.0122 (17) 0.0108 (18) 0.0129 (17)
C17 0.054 0.046 0.040 0.025 0.012 0.016
C11 0.049 0.045 0.042 0.012 0.007 0.019
C18 0.049 0.039 0.042 0.023 0.013 0.011
N1 0.082 0.056 0.078 0.021 0.031 0.024
C14 0.061 0.057 0.040 0.038 0.016 0.021
C16 0.056 0.055 0.056 0.034 0.021 0.024
C6 0.041 (2) 0.048 (2) 0.053 (3) 0.018 (2) 0.012 (2) 0.019 (2)
C5 0.038 0.042 0.067 0.013 0.007 0.001
C2 0.051 (2) 0.058 (3) 0.052 (3) 0.021 (2) 0.007 (2) 0.022 (2)
C10 0.071 (3) 0.038 (2) 0.056 (3) 0.017 (2) −0.001 (2) 0.017 (2)
N2 0.096 (3) 0.104 (3) 0.046 (2) 0.076 (2) 0.004 (2) 0.014 (2)
C9 0.068 (3) 0.049 (3) 0.056 (3) 0.030 (2) 0.004 (2) 0.011 (2)
C8 0.056 (2) 0.048 (3) 0.052 (3) 0.024 (2) 0.007 (2) 0.016 (2)
C15 0.073 0.064 0.042 0.039 0.020 0.021
C3 0.070 (3) 0.071 (3) 0.058 (3) 0.033 (3) 0.006 (3) 0.023 (3)
N3 0.089 0.071 0.110 0.009 −0.009 0.020
C4 0.062 (3) 0.076 (3) 0.057 (3) 0.035 (3) −0.004 (2) 0.013 (3)
C20 0.072 (3) 0.072 (4) 0.140 (6) 0.024 (3) 0.002 (4) 0.054 (4)
C19 0.158 (6) 0.134 (6) 0.132 (6) 0.039 (5) −0.018 (5) 0.077 (5)

Geometric parameters (Å, °)

P1—O1 1.500 (2) C6—C5 1.385 (5)
P1—C13 1.794 (3) C6—H6 0.9300
P1—C7 1.799 (3) C5—N3 1.362 (5)
P1—C1 1.799 (4) C5—C4 1.393 (5)
O2—C20 1.441 (5) C2—C3 1.394 (5)
O2—H2 0.8200 C2—H2A 0.9300
C12—C7 1.381 (5) C10—C9 1.361 (5)
C12—C11 1.398 (5) C10—H10 0.9300
C12—H12 0.9300 N2—H2B 0.8600
C7—C8 1.388 (5) N2—H2C 0.8600
C1—C2 1.381 (5) C9—C8 1.383 (5)
C1—C6 1.399 (5) C9—H9 0.9300
C13—C14 1.376 (5) C8—H8 0.9300
C13—C18 1.380 (4) C15—H15 0.9300
C17—N2 1.370 (4) C3—C4 1.361 (5)
C17—C18 1.390 (4) C3—H3 0.9300
C17—C16 1.396 (5) N3—H3A 0.8600
C11—N1 1.362 (4) N3—H3B 0.8600
C11—C10 1.387 (5) C4—H4 0.9300
C18—H18 0.9300 C20—C19 1.424 (8)
N1—H1A 0.8600 C20—H20A 0.9700
N1—H1B 0.8600 C20—H20B 0.9700
C14—C15 1.377 (5) C19—H19A 0.9600
C14—H14 0.9300 C19—H19B 0.9600
C16—C15 1.372 (5) C19—H19C 0.9600
C16—H16 0.9300
O1—P1—C13 112.04 (15) N3—C5—C4 120.3 (4)
O1—P1—C7 110.89 (16) C6—C5—C4 119.1 (4)
C13—P1—C7 107.89 (16) C1—C2—C3 120.6 (4)
O1—P1—C1 112.16 (15) C1—C2—H2A 119.7
C13—P1—C1 106.99 (16) C3—C2—H2A 119.7
C7—P1—C1 106.60 (16) C9—C10—C11 121.7 (4)
C20—O2—H2 109.5 C9—C10—H10 119.2
C7—C12—C11 121.1 (4) C11—C10—H10 119.2
C7—C12—H12 119.5 C17—N2—H2B 120.0
C11—C12—H12 119.5 C17—N2—H2C 120.0
C12—C7—C8 119.3 (3) H2B—N2—H2C 120.0
C12—C7—P1 122.6 (3) C10—C9—C8 120.1 (4)
C8—C7—P1 118.1 (3) C10—C9—H9 120.0
C2—C1—C6 119.5 (3) C8—C9—H9 120.0
C2—C1—P1 122.8 (3) C9—C8—C7 120.0 (4)
C6—C1—P1 117.7 (3) C9—C8—H8 120.0
C14—C13—C18 120.2 (3) C7—C8—H8 120.0
C14—C13—P1 122.0 (3) C16—C15—C14 120.6 (4)
C18—C13—P1 117.8 (3) C16—C15—H15 119.7
N2—C17—C18 121.5 (3) C14—C15—H15 119.7
N2—C17—C16 121.0 (3) C4—C3—C2 119.3 (4)
C18—C17—C16 117.5 (3) C4—C3—H3 120.4
N1—C11—C10 120.0 (4) C2—C3—H3 120.4
N1—C11—C12 122.2 (4) C5—N3—H3A 120.0
C10—C11—C12 117.8 (4) C5—N3—H3B 120.0
C13—C18—C17 121.3 (3) H3A—N3—H3B 120.0
C13—C18—H18 119.4 C3—C4—C5 121.6 (4)
C17—C18—H18 119.4 C3—C4—H4 119.2
C11—N1—H1A 120.0 C5—C4—H4 119.2
C11—N1—H1B 120.0 C19—C20—O2 109.0 (5)
H1A—N1—H1B 120.0 C19—C20—H20A 109.9
C13—C14—C15 119.4 (3) O2—C20—H20A 109.9
C13—C14—H14 120.3 C19—C20—H20B 109.9
C15—C14—H14 120.3 O2—C20—H20B 109.9
C15—C16—C17 121.0 (4) H20A—C20—H20B 108.3
C15—C16—H16 119.5 C20—C19—H19A 109.5
C17—C16—H16 119.5 C20—C19—H19B 109.5
C5—C6—C1 120.0 (4) H19A—C19—H19B 109.5
C5—C6—H6 120.0 C20—C19—H19C 109.5
C1—C6—H6 120.0 H19A—C19—H19C 109.5
N3—C5—C6 120.6 (4) H19B—C19—H19C 109.5
C11—C12—C7—C8 0.0 (5) N2—C17—C18—C13 −178.7 (3)
C11—C12—C7—P1 179.4 (3) C16—C17—C18—C13 −0.6 (5)
O1—P1—C7—C12 148.9 (3) C18—C13—C14—C15 −0.6 (5)
C13—P1—C7—C12 25.9 (3) P1—C13—C14—C15 178.5 (3)
C1—P1—C7—C12 −88.7 (3) N2—C17—C16—C15 178.3 (3)
O1—P1—C7—C8 −31.7 (3) C18—C17—C16—C15 0.2 (5)
C13—P1—C7—C8 −154.7 (3) C2—C1—C6—C5 −1.4 (5)
C1—P1—C7—C8 90.7 (3) P1—C1—C6—C5 178.1 (3)
O1—P1—C1—C2 137.1 (3) C1—C6—C5—N3 −179.3 (4)
C13—P1—C1—C2 −99.7 (3) C1—C6—C5—C4 0.3 (6)
C7—P1—C1—C2 15.5 (4) C6—C1—C2—C3 1.4 (6)
O1—P1—C1—C6 −42.5 (3) P1—C1—C2—C3 −178.1 (3)
C13—P1—C1—C6 80.8 (3) N1—C11—C10—C9 179.1 (3)
C7—P1—C1—C6 −164.0 (3) C12—C11—C10—C9 −0.3 (6)
O1—P1—C13—C14 145.0 (3) C11—C10—C9—C8 0.4 (6)
C7—P1—C13—C14 −92.6 (3) C10—C9—C8—C7 −0.2 (6)
C1—P1—C13—C14 21.7 (3) C12—C7—C8—C9 0.0 (5)
O1—P1—C13—C18 −35.8 (3) P1—C7—C8—C9 −179.4 (3)
C7—P1—C13—C18 86.5 (3) C17—C16—C15—C14 −0.1 (6)
C1—P1—C13—C18 −159.2 (3) C13—C14—C15—C16 0.3 (5)
C7—C12—C11—N1 −179.3 (3) C1—C2—C3—C4 −0.1 (6)
C7—C12—C11—C10 0.1 (5) C2—C3—C4—C5 −1.0 (6)
C14—C13—C18—C17 0.8 (5) N3—C5—C4—C3 −179.5 (4)
P1—C13—C18—C17 −178.4 (3) C6—C5—C4—C3 1.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N1i 0.86 2.62 3.469 (6) 168
O2—H2···O1 0.82 1.85 2.672 (3) 178
N2—H2B···O1ii 0.86 2.14 2.987 (4) 168
N2—H2C···O2iii 0.86 2.23 3.089 (5) 173

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2158).

References

  1. Bruker (2005). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dressick, W. J., George, C., Brandow, S. L., Schull, T. L. & Knight, D. A. (2000). J. Org. Chem.65, 5059–5062. [DOI] [PubMed]
  3. Hessler, A. & Stelzer, O. (1997). J. Org. Chem.62, 2362–2369. [DOI] [PubMed]
  4. Jean-Noël, G., Fronczek, F. R. & Isovitsch, R. (2004). Acta Cryst. E60, o1646–o1647.
  5. Michaelis, A., Michaelis, A. & von Soden, H. (1885). Liebigs Ann. Chem.229, 295–334.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680900909X/pk2158sup1.cif

e-65-0o839-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900909X/pk2158Isup2.hkl

e-65-0o839-Isup2.hkl (167.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES