Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o699–o700. doi: 10.1107/S160053680900765X

1-(1H-Benzimidazol-1-ylmeth­yl)-3-[2-(di­isopropyl­amino)eth­yl]-1H-benzimid­azolium bromide 0.25-hydrate

Hakan Arslan a,b,*, Don VanDerveer c, Serpil Demir d, İsmail Özdemir d, Bekir Çetinkaya e
PMCID: PMC2969106  PMID: 21582439

Abstract

The title N-heterocyclic carbene derivative, C23H30N5 +·Br·0.25H2O, was synthesized using microwave heating and was characterized by 1H and 13C NMR spectroscopy and a single-crystal X-ray diffraction study. The structure of the title compound are stabilized by a network of intra- and inter­molecular C—H⋯Br hydrogen-bonding inter­actions. The crystal structure is further stabilized by π–π stacking inter­actions between benzene and imidazole fragment rings of parallel benzo[d]imidazole rings, with a separation of 3.486 (3) Å between the centroids of the benzene and imidazole rings. There is also an inter­molecular C—H⋯π inter­action in the crystal structure. The C—N bond lengths for the central benzimidazole ring are shorter than the average single C—N bond, thus showing varying degrees of double-bond character and indicating partial electron delocalization within the C—N—C—N—C fragment. The isopropyl group is disordered over two sites with occupancies of 0.792 (10) and 0.208 (10).

Related literature

For the synthesis, see: Yaşar et al. (2008). For general background, see: Herrmann et al. (1995); Navarro et al. (2006); Arduengo & Krafczyc (1998); Larhed et al. (2002); Leadbeater & Shoemaker (2008). For related compounds, see: Özel Güven et al. (2008a ,b ,c ); Türktekin et al. (2004); Akkurt et al. (2004, 2005, 2007a ,b ); Arslan et al. (2005, 2007, 2009 and references therein).graphic file with name e-65-0o699-scheme1.jpg

Experimental

Crystal data

  • C23H30N5 +·Br·0.25H2O

  • M r = 460.93

  • Triclinic, Inline graphic

  • a = 8.4944 (17) Å

  • b = 9.4960 (19) Å

  • c = 15.318 (3) Å

  • α = 83.29 (3)°

  • β = 84.69 (3)°

  • γ = 65.93 (3)°

  • V = 1119.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 153 K

  • 0.34 × 0.12 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.571, T max = 0.836

  • 7638 measured reflections

  • 3889 independent reflections

  • 2390 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.144

  • S = 0.98

  • 3889 reflections

  • 282 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900765X/hg2484sup1.cif

e-65-0o699-sup1.cif (24.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900765X/hg2484Isup2.hkl

e-65-0o699-Isup2.hkl (190.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.96 2.75 3.493 (7) 135
C6—H6⋯Br1i 0.96 2.75 3.702 (6) 173
C20—H20ACg1 0.96 2.95 3.445 (5) 113

Symmetry code: (i) Inline graphic. Cg1is the centroid of the N1,C1,N2,C7,C2 ring.

Acknowledgments

We thank the İnönü University Research Fund (İÜ BAP: 2008/Güdümlü 3) for financial support.

supplementary crystallographic information

Comment

N-Heterocyclic carbene compounds have been shown to have wide applicability in organometallic chemistry and catalysis such as Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann et al., 1995; Navarro et al., 2006; Arduengo & Krafczyc, 1998). In general, N-heterocyclic carbene chemistry is dominated by imidazole, diazepin, benzimidazole and their derivatives based carbene ligands.

Microwave-promoted synthesis is an area of increasing interest in both academic and industrial laboratories (Larhed et al., 2002). Microwave heating offers a fast, easy way to perform chemical reactions that require heat. Synthetic organic chemists have taken advantage of microwave heating in their work and found that reaction times can often be reduced from hours to minutes with a significant improvement in yields (Leadbeater & Shoemaker, 2008).

Our team has been interested in complexes of derivatives based on N-heterocyclic carbene compounds which exhibit high catalytic activities for Suzuki-Miyura, and Heck reactions. As a continuation of our systematic studies of the various N-heterocyclic carbene compounds and the catalytic properties of their palladium, ruthenium and rhodium complexes (Yaşar et al., 2008; Arslan et al., 2005, 2007, 2009, and references therein), we have prepared a new carbene compound which includes a benzo[d]imidazole and an amine group. The title compound, (I), synthesis and characterization, including its crystal structure is reported here. The compound was purified by re-crystallizationfrom an ethanol:diethylether mixture (1:2) and characterized by 1H and 13C-NMR. These data are consistent with the proposed structure given in Scheme 1.

The crystallographic asymmetric unit of the title compound contains a single 3-((1H-benzo[d]imidazol-1-yl)methyl)-1-(2-(diisopropylamino)ethyl)-1H-benzo[d]imidazol-3-ium cation, one bromide anion and 0.25 mole water molecule linked by hydrogen and stacking interactions to form a three-dimensional framework. The molecular structure of the title compound is depicted in Fig. 1.

The imidazole and benzimidazole ring systems are essentially planar with maximum deviations of 0.002 (5), 0.008 (5), 0.029 (5) and 0.020 (5) Å for N1—C1—N2—C7—C2, N3—C9—N4—C11—C16, N1—C1—N2—C7—C2—C3—C4—C5—C6 and N3—C9—N4—C11—C12—C13—C14—C15 rings, respectively. The dihedral angle between the benzimidazole rings is 69.51 (8)o. The geometric parameters for the N3—C9—N4—C11—C12—C13—C14—C15 benzimidazole ring agree with the other reported benzimidazole derivatives (Özel Güven et al., 2008a, 2008b, 2008c; Türktekin et al., 2004; Akkurt et al., 2004, 2005, 2007a, 2007b). In particular, in the N—C—N fragments, the C9—N4 bond length (1.295 (8) Å) is ca 0.08 Å shorter than the C9—N3 bond length (1.367 (9) Å), which is consistent with the partial double-bond character. The C—N bond lengths for the other benzimidazole ring are shorter than the average single C—N bond, being N1—C1 = 1.332 (7) Å, N2—C1 = 1.332 (9) Å, N1—C2 = 1.398 (7) Å, and N2—C7 = 1.399 (6) Å thus showing varying degrees of double bond character in these C—N bonds. This information indicates a partial electron delocalization within the C2—N1—C1—N2—C7 fragment. This result is confirmed by the N1—C1—N2 bond angle.

The crystal packing is stabilized mainly by C—H···Br hydrogen bonds and stacking interactions. A partially overlapped arrangement is observed between parallel benzimidazole rings (see Fig. 2) so these parallel benzimidazole rings are linked by π-π stacking interactions. The centroid-centroid separation between the parallel imidazole and benzene ring fragments (N1—C1—N2—C7—C2i and C2—C3—C4—C5—C6—C7i) of the benzimidazole ring is 3.486 (3) Å with C1···C4ii = 3.398 (7) Å [symmetry code: (i) x, y, z, (ii) 1 - x, 1 - y, 1 - z]. In addition, a C—H···π interaction is observed between Cg1 (Centroid of N1—C1—N2—C7—C2 ring) and the C20 atom: H20A···Cg1i = 2.950 Å, C20—H20A···Cg1i = 113.0° [symmetry code: (i) x, y, z].

Experimental

All reactions for the preparation of (II) and (III) were carried out under Ar inflame-dried glass-ware using standard Schlenk-type flasks (Fig. 3). All 1H and 13C-NMRs were performed in CDCl3. 1H NMR and 13C NMR spectra were recorded using a Varian As 400 Merkur spectrometer operating at 400 MHz (1H) and 100 MHz (13C). Chemical shifts (δ) are given in p.p.m. relative to TMS, coupling constants (J) in Hz. Melting points were measured in open capillary tubes with an Electrothermal-9200 melting point apparatus and are uncorrected. Microwave assisted reactions were carried out in a self-tuning single mode CEM Discover microwave unit. This consist of a continuous focused microwave power delivery system with operator-selectable power output from 0 to 300 W. The reaction was performed in an 80 ml capacity sealed tube. Temperature, pressure and power profiles were monitored using commercially available software provided by the microwave manufacturer.

Dibromomethane (1.74 g, 10.0 mmol) was slowly added to a solution of N-(2-(1H-benzo[d]imidazol-1-yl)ethyl)-N-isopropylpropan-2-amine (II) (2.45 g, 10.0 mmol) in DMF (5 ml) and the resulting mixture was stirred at 50 oC for 5 h (Fig. 3). Diethylether (10 ml) was added to obtain a white crystalline solid which was filtered off. The solid was washed with diethylether (3x10 ml), dried under vacuum and the crude product (III) was recrystallized from ethanol:diethylether. The yield was 2.72 g, 65%. In a dry 80 ml glass vessel equipped with a magnetic stirbar were added a potassium hydroxide (1 mmol) solution of benzimidazole (1 mmol) in ethanol (20 ml) and compound (III) (1 mmol). The vessel was sealed with a septum and placed in the microwave apparatus. With stirring, the reaction mixture was heated to 100 oC using an initial microwave power of 300 W and was held at this temperature for 10 min. The reaction mixture was then cooled to 50 oC, the solid was filtered off. The solvent was removed under vacuum. The product (I) was recrystallized from ethanol:diethylether (1: 2 ratio). The yield was 3.47 g, 76%, M.p.= 208–209 oC. 1H NMR (δ, 399.9 MHz, CDCl3): 0.87 (d, 12H, J= 6.6 Hz, NCH(CH3)2), 2.98 (t, 2H, J = 6.0 Hz, NCH2CH2N), 3.04 (hept, 2H, J = 6.6 Hz, NCH(CH3)2), 4.58 (t, 2H, J = 6.0 Hz, NCH2CH2N), 5.98 (s, 2H, –CH2–), 7.61–7.77 (m, 9H, C6H4 and NCH=N), 10.96 (s, 1H, NCHN). 13C NMR (δ, CDCl3): 20.8 (NCH(CH3)2), 44.5 (NCH2CH2N), 47.8 (NCH(CH3)2), 48.2 (-CH2–), 112.7, 113.2, 126.4, 126.7, 130.5 and 131.4 (C6H4), 143.4 (NCH=N), 143.6 (NCHN).

Refinement

The H atoms were geometrically placed and treated as riding atoms with C—H = 0.96 Å, and Uiso(H) = 1.5 Ueq (parent C-atom = CH3). The other H atoms were treated the same with Uiso(H) = 1.2 Ueq (parent C-atom). We were unable to assign H atoms to the water molecule.

The isopropyl group (C22, C23, C24) is disordered. We were able to resolve C22 and C24 into two atoms. The major/minor component ratio is 0.79/0.21. The two minor component atoms were refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I).

Fig. 3.

Fig. 3.

Synthesis of the title compound.

Crystal data

C23H30N5+·Br·0.25H2O Z = 2
Mr = 460.93 F(000) = 481
Triclinic, P1 Dx = 1.368 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4944 (17) Å Cell parameters from 5869 reflections
b = 9.4960 (19) Å θ = 3.2–26.4°
c = 15.318 (3) Å µ = 1.86 mm1
α = 83.29 (3)° T = 153 K
β = 84.69 (3)° Rod, colorless
γ = 65.93 (3)° 0.34 × 0.12 × 0.10 mm
V = 1119.1 (5) Å3

Data collection

Rigaku Mercury CCD diffractometer 3889 independent reflections
Radiation source: Sealed Tube 2390 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.039
Detector resolution: 14.6306 pixels mm-1 θmax = 25.0°, θmin = 3.2°
ω scans h = −9→10
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −11→11
Tmin = 0.571, Tmax = 0.836 l = −17→18
7638 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0659P)2] where P = (Fo2 + 2Fc2)/3
3889 reflections (Δ/σ)max = 0.001
282 parameters Δρmax = 0.74 e Å3
22 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.78369 (7) 0.88546 (6) 0.57962 (4) 0.05288 (19)
N1 0.6315 (5) 0.5169 (5) 0.6422 (2) 0.0430 (10)
N2 0.3772 (6) 0.7103 (4) 0.6314 (3) 0.0499 (11)
N3 0.1831 (7) 0.9149 (5) 0.7189 (3) 0.0544 (12)
N4 0.0314 (6) 0.9404 (5) 0.8478 (3) 0.0575 (12)
N5 0.7558 (5) 0.4797 (5) 0.8187 (2) 0.0411 (10)
C1 0.5416 (8) 0.6676 (6) 0.6495 (3) 0.0511 (14)
H1 0.5890 0.7364 0.6658 0.061*
C2 0.5188 (6) 0.4562 (5) 0.6178 (3) 0.0334 (10)
C3 0.5464 (6) 0.3083 (5) 0.5999 (3) 0.0352 (10)
H3 0.6568 0.2231 0.6057 0.042*
C4 0.4050 (6) 0.2909 (5) 0.5732 (3) 0.0375 (11)
H4 0.4179 0.1906 0.5595 0.045*
C5 0.2451 (6) 0.4136 (5) 0.5654 (3) 0.0416 (12)
H5 0.1508 0.3949 0.5470 0.050*
C6 0.2162 (7) 0.5628 (6) 0.5833 (3) 0.0475 (13)
H6 0.1060 0.6480 0.5770 0.057*
C7 0.3565 (7) 0.5795 (5) 0.6106 (3) 0.0382 (11)
C8 0.2416 (10) 0.8685 (6) 0.6319 (4) 0.0700 (18)
H8A 0.2855 0.9397 0.6007 0.084*
H8B 0.1452 0.8743 0.6013 0.084*
C9 0.0487 (8) 0.8983 (6) 0.7688 (4) 0.0629 (17)
H9 −0.0264 0.8588 0.7471 0.075*
C11 0.1667 (7) 0.9865 (5) 0.8532 (3) 0.0416 (12)
C12 0.2084 (7) 1.0432 (5) 0.9234 (3) 0.0470 (13)
H12 0.1438 1.0529 0.9788 0.056*
C13 0.3479 (9) 1.0850 (7) 0.9095 (4) 0.0683 (17)
H13 0.3776 1.1281 0.9559 0.082*
C14 0.4463 (10) 1.0666 (8) 0.8304 (5) 0.091 (2)
H14 0.5443 1.0937 0.8245 0.109*
C15 0.4059 (9) 1.0098 (7) 0.7597 (4) 0.078 (2)
H15 0.4722 0.9984 0.7047 0.093*
C16 0.2652 (8) 0.9710 (5) 0.7730 (3) 0.0497 (14)
C17 0.8119 (6) 0.4275 (7) 0.6628 (3) 0.0518 (14)
H17A 0.8739 0.4932 0.6528 0.062*
H17B 0.8634 0.3453 0.6247 0.062*
C18 0.8254 (7) 0.3596 (6) 0.7583 (3) 0.0461 (13)
H18A 0.7636 0.2936 0.7680 0.055*
H18B 0.9444 0.2974 0.7696 0.055*
C19 0.6381 (6) 0.4499 (5) 0.8896 (3) 0.0348 (10)
H19 0.6113 0.5273 0.9302 0.042*
C20 0.4689 (6) 0.4737 (6) 0.8519 (3) 0.0462 (12)
H20A 0.4186 0.5761 0.8229 0.069*
H20B 0.3911 0.4610 0.8986 0.069*
H20C 0.4903 0.3989 0.8103 0.069*
C21 0.7152 (7) 0.2931 (6) 0.9424 (3) 0.0489 (13)
H21A 0.7476 0.2122 0.9037 0.073*
H21B 0.6313 0.2831 0.9864 0.073*
H21C 0.8153 0.2852 0.9705 0.073*
C22 0.9092 (11) 0.5022 (9) 0.8612 (5) 0.054 (2) 0.792 (10)
H22 0.9695 0.4146 0.9013 0.065* 0.792 (10)
C22' 0.843 (2) 0.582 (2) 0.8331 (14) 0.021 (5)* 0.208 (10)
H22' 0.9455 0.5571 0.8048 0.025* 0.208 (10)
C23 1.0298 (9) 0.5239 (10) 0.7878 (5) 0.098 (2)
H23A 1.1470 0.4660 0.8038 0.118*
H23B 1.0083 0.6318 0.7774 0.118*
H23C 1.0110 0.4880 0.7353 0.118*
C24 0.8241 (13) 0.6470 (11) 0.9089 (6) 0.090 (3) 0.792 (10)
H24A 0.7210 0.7156 0.8803 0.136* 0.792 (10)
H24B 0.9019 0.6974 0.9079 0.136* 0.792 (10)
H24C 0.7950 0.6202 0.9687 0.136* 0.792 (10)
C24' 0.729 (2) 0.726 (2) 0.8681 (14) 0.022 (5)* 0.208 (10)
H24D 0.6329 0.7782 0.8312 0.034* 0.208 (10)
H24E 0.7908 0.7908 0.8697 0.034* 0.208 (10)
H24F 0.6878 0.7052 0.9265 0.034* 0.208 (10)
O1 0.968 (2) 0.133 (2) 0.5686 (12) 0.076 (5) 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0484 (3) 0.0364 (3) 0.0800 (4) −0.0213 (2) −0.0238 (3) 0.0042 (2)
N1 0.061 (2) 0.061 (3) 0.024 (2) −0.042 (2) 0.0074 (18) −0.0127 (18)
N2 0.093 (3) 0.030 (2) 0.028 (2) −0.025 (2) −0.002 (2) −0.0085 (18)
N3 0.097 (4) 0.031 (2) 0.030 (2) −0.017 (2) −0.011 (2) −0.0116 (18)
N4 0.054 (3) 0.050 (3) 0.068 (3) −0.015 (2) −0.003 (2) −0.027 (2)
N5 0.058 (2) 0.051 (2) 0.026 (2) −0.033 (2) 0.0081 (18) −0.0133 (18)
C1 0.097 (4) 0.051 (3) 0.026 (3) −0.050 (3) 0.006 (3) −0.011 (2)
C2 0.045 (2) 0.038 (3) 0.025 (2) −0.025 (2) 0.007 (2) −0.0089 (19)
C3 0.042 (2) 0.035 (2) 0.030 (3) −0.017 (2) 0.004 (2) −0.008 (2)
C4 0.051 (3) 0.036 (3) 0.032 (3) −0.023 (2) 0.000 (2) −0.009 (2)
C5 0.041 (3) 0.044 (3) 0.041 (3) −0.016 (2) −0.002 (2) −0.012 (2)
C6 0.053 (3) 0.046 (3) 0.028 (3) −0.002 (3) −0.003 (2) −0.014 (2)
C7 0.064 (3) 0.034 (3) 0.019 (2) −0.020 (2) −0.002 (2) −0.0061 (19)
C8 0.128 (5) 0.032 (3) 0.038 (3) −0.017 (3) −0.014 (3) −0.004 (2)
C9 0.057 (3) 0.048 (3) 0.077 (5) −0.006 (3) −0.009 (3) −0.032 (3)
C11 0.058 (3) 0.027 (2) 0.036 (3) −0.012 (2) −0.003 (2) −0.005 (2)
C12 0.068 (3) 0.034 (3) 0.035 (3) −0.015 (3) −0.005 (3) −0.006 (2)
C13 0.100 (5) 0.065 (4) 0.055 (4) −0.042 (4) 0.002 (3) −0.033 (3)
C14 0.129 (5) 0.098 (5) 0.088 (5) −0.088 (4) 0.046 (4) −0.058 (4)
C15 0.145 (5) 0.067 (4) 0.053 (4) −0.078 (4) 0.041 (4) −0.031 (3)
C16 0.097 (4) 0.027 (3) 0.031 (3) −0.029 (3) −0.004 (3) −0.009 (2)
C17 0.054 (3) 0.081 (4) 0.041 (3) −0.047 (3) 0.014 (2) −0.024 (3)
C18 0.048 (3) 0.057 (3) 0.036 (3) −0.022 (3) 0.011 (2) −0.019 (2)
C19 0.038 (2) 0.040 (3) 0.026 (2) −0.014 (2) 0.0014 (19) −0.004 (2)
C20 0.047 (3) 0.060 (3) 0.036 (3) −0.025 (3) −0.002 (2) −0.002 (2)
C21 0.051 (3) 0.044 (3) 0.044 (3) −0.014 (3) 0.000 (2) 0.006 (2)
C22 0.092 (5) 0.050 (4) 0.035 (4) −0.047 (4) 0.021 (4) −0.008 (3)
C23 0.076 (4) 0.142 (6) 0.109 (6) −0.067 (5) −0.014 (4) −0.037 (5)
C24 0.131 (7) 0.119 (7) 0.075 (6) −0.100 (6) 0.029 (6) −0.053 (5)
O1 0.070 (10) 0.081 (11) 0.091 (13) −0.040 (9) 0.006 (9) −0.027 (10)

Geometric parameters (Å, °)

N1—C1 1.332 (6) C14—C15 1.392 (8)
N1—C2 1.399 (5) C14—H14 0.9600
N1—C17 1.461 (7) C15—C16 1.379 (8)
N2—C1 1.333 (7) C15—H15 0.9600
N2—C7 1.398 (5) C17—C18 1.522 (7)
N2—C8 1.474 (7) C17—H17A 0.9600
N3—C9 1.367 (7) C17—H17B 0.9600
N3—C16 1.404 (6) C18—H18A 0.9600
N3—C8 1.432 (7) C18—H18B 0.9600
N4—C9 1.296 (7) C19—C20 1.519 (6)
N4—C11 1.399 (6) C19—C21 1.524 (7)
N5—C18 1.450 (6) C19—H19 0.9600
N5—C22' 1.487 (19) C20—H20A 0.9599
N5—C19 1.489 (5) C20—H20B 0.9599
N5—C22 1.608 (8) C20—H20C 0.9599
C1—H1 0.9600 C21—H21A 0.9599
C2—C3 1.382 (6) C21—H21B 0.9599
C2—C7 1.402 (7) C21—H21C 0.9599
C3—C4 1.380 (6) C22—C23 1.504 (9)
C3—H3 0.9600 C22—C24 1.507 (10)
C4—C5 1.387 (6) C22—H22 0.9600
C4—H4 0.9600 C22—H22' 1.045 (6)
C5—C6 1.393 (6) C22'—C24' 1.44 (2)
C5—H5 0.9600 C22'—H22' 0.889 (17)
C6—C7 1.372 (7) C23—H22' 0.693 (7)
C6—H6 0.9600 C23—H23A 0.9600
C8—H8A 0.9600 C23—H23B 0.9600
C8—H8B 0.9600 C23—H23C 0.9600
C9—H9 0.9600 C24—H24A 0.9600
C11—C12 1.391 (7) C24—H24B 0.9600
C11—C16 1.407 (7) C24—H24C 0.9600
C12—C13 1.387 (8) C24'—H24D 0.9600
C12—H12 0.9600 C24'—H24E 0.9600
C13—C14 1.392 (8) C24'—H24F 0.9600
C13—H13 0.9600
C1—N1—C2 107.8 (4) C15—C16—N3 133.2 (5)
C1—N1—C17 126.4 (4) C15—C16—C11 122.7 (5)
C2—N1—C17 125.6 (4) N3—C16—C11 104.0 (5)
C1—N2—C7 108.1 (4) N1—C17—C18 110.7 (4)
C1—N2—C8 125.8 (5) N1—C17—H17A 109.5
C7—N2—C8 126.1 (5) C18—C17—H17A 109.5
C9—N3—C16 106.5 (4) N1—C17—H17B 109.5
C9—N3—C8 127.1 (5) C18—C17—H17B 109.5
C16—N3—C8 126.1 (5) H17A—C17—H17B 108.1
C9—N4—C11 104.7 (5) N5—C18—C17 111.7 (4)
C18—N5—C22' 123.0 (8) N5—C18—H18A 109.3
C18—N5—C19 113.1 (3) C17—C18—H18A 109.3
C22'—N5—C19 119.4 (8) N5—C18—H18B 109.3
C18—N5—C22 110.5 (4) C17—C18—H18B 109.3
C19—N5—C22 109.9 (3) H18A—C18—H18B 108.0
N1—C1—N2 111.1 (4) N5—C19—C20 110.0 (4)
N1—C1—H1 124.5 N5—C19—C21 114.8 (4)
N2—C1—H1 124.5 C20—C19—C21 111.1 (4)
C3—C2—N1 131.3 (4) N5—C19—H19 106.8
C3—C2—C7 121.9 (4) C20—C19—H19 106.8
N1—C2—C7 106.8 (4) C21—C19—H19 106.8
C4—C3—C2 115.7 (4) C19—C20—H20A 109.5
C4—C3—H3 122.1 C19—C20—H20B 109.5
C2—C3—H3 122.1 H20A—C20—H20B 109.5
C3—C4—C5 122.2 (4) C19—C20—H20C 109.5
C3—C4—H4 118.9 H20A—C20—H20C 109.5
C5—C4—H4 118.9 H20B—C20—H20C 109.5
C4—C5—C6 122.4 (4) C19—C21—H21A 109.5
C4—C5—H5 118.8 C19—C21—H21B 109.5
C6—C5—H5 118.8 H21A—C21—H21B 109.5
C7—C6—C5 115.3 (5) C19—C21—H21C 109.5
C7—C6—H6 122.4 H21A—C21—H21C 109.5
C5—C6—H6 122.4 H21B—C21—H21C 109.5
C6—C7—N2 131.2 (5) C23—C22—C24 110.2 (6)
C6—C7—C2 122.5 (4) C23—C22—N5 108.3 (5)
N2—C7—C2 106.3 (4) C24—C22—N5 105.8 (6)
N3—C8—N2 113.0 (4) C23—C22—H22 110.8
N3—C8—H8A 109.0 C24—C22—H22 110.8
N2—C8—H8A 109.0 N5—C22—H22 110.8
N3—C8—H8B 109.0 C24'—C22'—N5 114.1 (14)
N2—C8—H8B 109.0 N5—C22'—H22' 113.3 (17)
H8A—C8—H8B 107.8 C22—C23—H23A 109.5
N4—C9—N3 114.3 (5) C22—C23—H23B 109.5
N4—C9—H9 122.9 H23A—C23—H23B 109.5
N3—C9—H9 122.9 C22—C23—H23C 109.5
C12—C11—N4 129.0 (5) H23A—C23—H23C 109.5
C12—C11—C16 120.5 (5) H23B—C23—H23C 109.5
N4—C11—C16 110.5 (4) C22—C24—H24A 109.5
C13—C12—C11 116.8 (5) C22—C24—H24B 109.5
C13—C12—H12 121.6 H24A—C24—H24B 109.5
C11—C12—H12 121.6 C22—C24—H24C 109.5
C12—C13—C14 122.2 (5) H24A—C24—H24C 109.5
C12—C13—H13 118.9 H24B—C24—H24C 109.5
C14—C13—H13 118.9 C22'—C24'—H24D 109.5
C13—C14—C15 121.5 (6) C22'—C24'—H24E 109.5
C13—C14—H14 119.3 H24D—C24'—H24E 109.5
C15—C14—H14 119.3 C22'—C24'—H24F 109.5
C16—C15—C14 116.3 (5) H24D—C24'—H24F 109.5
C16—C15—H15 121.9 H24E—C24'—H24F 109.5
C14—C15—H15 121.9
C2—N1—C1—N2 −0.1 (5) C11—C12—C13—C14 −2.2 (9)
C17—N1—C1—N2 −175.5 (4) C12—C13—C14—C15 2.3 (11)
C7—N2—C1—N1 0.0 (5) C13—C14—C15—C16 −1.0 (10)
C8—N2—C1—N1 −179.2 (4) C14—C15—C16—N3 178.3 (6)
C1—N1—C2—C3 178.5 (5) C14—C15—C16—C11 −0.2 (9)
C17—N1—C2—C3 −6.1 (7) C9—N3—C16—C15 −179.9 (6)
C1—N1—C2—C7 0.2 (5) C8—N3—C16—C15 6.3 (9)
C17—N1—C2—C7 175.6 (4) C9—N3—C16—C11 −1.1 (5)
N1—C2—C3—C4 −176.9 (4) C8—N3—C16—C11 −174.9 (5)
C7—C2—C3—C4 1.1 (6) C12—C11—C16—C15 0.2 (8)
C2—C3—C4—C5 −0.5 (7) N4—C11—C16—C15 179.3 (5)
C3—C4—C5—C6 0.5 (7) C12—C11—C16—N3 −178.7 (4)
C4—C5—C6—C7 −1.1 (7) N4—C11—C16—N3 0.4 (5)
C5—C6—C7—N2 177.7 (5) C1—N1—C17—C18 90.7 (5)
C5—C6—C7—C2 1.7 (7) C2—N1—C17—C18 −83.9 (5)
C1—N2—C7—C6 −176.3 (5) C22'—N5—C18—C17 −71.1 (11)
C8—N2—C7—C6 2.9 (8) C19—N5—C18—C17 133.1 (4)
C1—N2—C7—C2 0.1 (5) C22—N5—C18—C17 −103.2 (5)
C8—N2—C7—C2 179.4 (4) N1—C17—C18—N5 −61.6 (5)
C3—C2—C7—C6 −1.8 (7) C18—N5—C19—C20 −71.9 (5)
N1—C2—C7—C6 176.7 (4) C22'—N5—C19—C20 131.3 (10)
C3—C2—C7—N2 −178.7 (4) C22—N5—C19—C20 164.0 (4)
N1—C2—C7—N2 −0.2 (5) C18—N5—C19—C21 54.3 (5)
C9—N3—C8—N2 −91.4 (7) C22'—N5—C19—C21 −102.6 (10)
C16—N3—C8—N2 81.2 (7) C22—N5—C19—C21 −69.8 (5)
C1—N2—C8—N3 −74.6 (7) C18—N5—C22—C23 51.6 (7)
C7—N2—C8—N3 106.3 (6) C22'—N5—C22—C23 −68.6 (15)
C11—N4—C9—N3 −1.3 (6) C19—N5—C22—C23 177.2 (5)
C16—N3—C9—N4 1.6 (7) C18—N5—C22—C24 169.8 (5)
C8—N3—C9—N4 175.3 (5) C22'—N5—C22—C24 49.5 (15)
C9—N4—C11—C12 179.6 (5) C19—N5—C22—C24 −64.6 (6)
C9—N4—C11—C16 0.5 (6) C18—N5—C22'—C24' 158.1 (13)
N4—C11—C12—C13 −178.0 (5) C19—N5—C22'—C24' −47.5 (19)
C16—C11—C12—C13 1.0 (7) C22—N5—C22'—C24' −127 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···Br1 0.96 2.75 3.493 (7) 135
C6—H6···Br1i 0.96 2.75 3.702 (6) 173
C20—H20A···Cg1 0.96 2.95 3.445 (5) 113

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2484).

References

  1. Akkurt, M., Karaca, S., Küçükbay, H. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o1065–o1066.
  2. Akkurt, M., Karaca, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2452–o2454.
  3. Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o219–o221.
  4. Akkurt, M., Pınar, Ş., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2007b). Acta Cryst. E63, o379–o381.
  5. Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg, 32, 6–14.
  6. Arslan, H., VanDerveer, D., Özdemir, İ., Çetinkaya, B. & Demir, S. (2005). J. Chem. Crystallogr.35, 491–495.
  7. Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2009). Acta Cryst. E65, m97–m98. [DOI] [PMC free article] [PubMed]
  8. Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007). Acta Cryst. E63, m942–m944.
  9. Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl 34, 2371–2374.
  10. Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
  11. Larhed, M., Moberg, C. & Hallberg, A. (2002). Acc. Chem. Res 35, 717-727. [DOI] [PubMed]
  12. Leadbeater, N. E. & Shoemaker, K. M. (2008). Organometallics, 27, 1254–1258.
  13. Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem.71, 685–692. [DOI] [PubMed]
  14. Özel Güven, Ö. el, Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437. [DOI] [PMC free article] [PubMed]
  15. Özel Güven, Ö. el, Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1588–o1589. [DOI] [PMC free article] [PubMed]
  16. Özel Güven, Ö. el, Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1655–o1656. [DOI] [PMC free article] [PubMed]
  17. Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Türktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o817–o819.
  20. Yaşar, S., Özdemir, İ., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem 12, 2142–2149.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900765X/hg2484sup1.cif

e-65-0o699-sup1.cif (24.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900765X/hg2484Isup2.hkl

e-65-0o699-Isup2.hkl (190.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES