Abstract
Single crystals of KTb(C2O4)(SO4)(H2O), potassium aquaterbium(III) oxalate sulfate, were obtained under hydrothermal conditions. In the crystal structure, the Tb(III) atom is coordinated by four O atoms from two oxalate anions, three O atoms from three sulfate anions and one O atom from a water molecule within a TbO8 distorted square antiprismatic coordination. The potassium and terbium(III) atoms are bridged by the oxalate and sulfate groups, forming a three-dimensional structure. The coordination mode of the oxalate has not yet been reported. O—H⋯O hydrogen bonding between the water molecules and the oxygen atoms of oxalate and sulfate anions is also observed.
Related literature
For oxaltes and their coordination modes, see: Audebrand et al. (2003 ▶); Dean et al. (2004 ▶); Lu et al. (2004 ▶).
Experimental
Crystal data
KTb(C2O4)(SO4)(H2O)
M r = 400.14
Monoclinic,
a = 6.5274 (13) Å
b = 8.5072 (17) Å
c = 14.591 (4) Å
β = 112.65 (3)°
V = 747.7 (3) Å3
Z = 4
Mo Kα radiation
μ = 10.32 mm−1
T = 113 K
0.06 × 0.04 × 0.02 mm
Data collection
Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003 ▶) T min = 0.576, T max = 0.820
4812 measured reflections
1317 independent reflections
1079 reflections with I > 2σ(I)
R int = 0.057
Refinement
R[F 2 > 2σ(F 2)] = 0.023
wR(F 2) = 0.051
S = 1.05
1317 reflections
127 parameters
24 restraints
H-atom parameters constrained
Δρmax = 0.92 e Å−3
Δρmin = −0.78 e Å−3
Data collection: SMART (Bruker, 2001 ▶); cell refinement: SAINT (Bruker, 2001 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg, 1998 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019679/br2105sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019679/br2105Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O9—H9A⋯O2i | 0.96 (6) | 1.88 (4) | 2.731 (4) | 145 (5) |
| O9—H9B⋯O3ii | 0.96 (6) | 1.86 (3) | 2.787 (5) | 160 (9) |
| O9—H9B⋯O7i | 0.97 (6) | 2.83 (9) | 3.149 (5) | 100 (6) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This project was sponsored by SRF for ROCS, SEM, and the Research Foundation of Education Department of Liaoning Province (No. 2008581).
supplementary crystallographic information
Comment
Recently, rationally design of novel inorganic componds based on alkali metal ions and rare earth ions are currently of great interest because of their potential applications in photoluminescent fields. For purpose of enriching the chemistry field of this compound family, we have successfully synthesized the title compound.
In the title compound, the coordination environments of the rare earth TbIII cations consist of eight O atoms which are associated with one water molecule, two sulfate groups and two oxalates. TbIII cations are at the shared apex of two dicapped rectangular pyramids (Fig.1). The K+ cations are surrounded by nine O atoms, including one water O atom, six O atoms from oxalates and two O atoms from sulfate groups.
Oxalates are of considerable interest because many of them are natural minerals and in addition, the oxalate anion can adopt different coordination modes to bind metals to form infinite chains, sheets and networks, leading to the rich structural chemistry (Lu et al., 2004; Dean et al., 2004; Audebrand et al., 2003). In the title compound, the oxalate ligand has an unique coordination mode (κ3-κ2-µ4)-(κ3-κ2-µ4)-µ6-ox2-. Fig.2 shows coordination mode of the oxalate and sulfate ligands in the title compuond.
Two adjacent TbIII ions were connected through the oxalates to form one-dimensional chain structure (see Fig.3), and then were connected through the sulfate anions and water molecules to form the three-dimensional framework (see Fig.4).
Experimental
A mixture of FeSO4.7H2O (0.1 mmol),Tb(NO3)3.5H2O (0.1 mmol) and oxalic acid (0.2 mmol) in H2O (10 mL) was adjust to pH=6.8 with KOH aqueous solution, sealed in a 25 mL Teflon-lined bomb at 430 K for 4 days and then slowly cooled to room temperature at a rate of 5° K per hour. Colorless block crystals were obtained by filtration.The structure was determined by single-crystal diffraction.
Refinement
Water H atoms were located in a difference Fourier maps and refined to restraint with O—H distance of 0.97Å and Uĩso(H) = 1.2Ueq(O). In order improve the R and wR factors,weak diffraction reflections in high 2 theta angles were omitted.Because of difficulties in obtaining convergence in the refinement the anisotropy of the atomic displacement parameters of some O and C atoms were restrained.
Figures
Fig. 1.
A view of the environment of (a) the Tb atom, The symmetry codes are in Table 1.Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view of coordination modes of (a)the Oxalate and (b) the sulfate anion.
Fig. 3.
The one-dimensional chain structure of the KTb(SO4)(C2O4)(H2O) along c axis(hydrogen atoms omitted).
Fig. 4.
The structural arrangement of KTb(SO4)(C2O4)(H2O) along b axis(hydrogen and potassium atoms omitted).The green polyhedras are TbO8.
Crystal data
| KTb(C2O4)(SO4)(H2O) | F(000) = 744 |
| Mr = 400.14 | Dx = 3.554 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 1317 reflections |
| a = 6.5274 (13) Å | θ = 2.8–27.2° |
| b = 8.5072 (17) Å | µ = 10.32 mm−1 |
| c = 14.591 (4) Å | T = 113 K |
| β = 112.65 (3)° | Block, colorless |
| V = 747.7 (3) Å3 | 0.06 × 0.04 × 0.02 mm |
| Z = 4 |
Data collection
| Bruker SMART 1000 CCD diffractometer | 1317 independent reflections |
| Radiation source: rotating anode | 1079 reflections with I > 2σ(I) |
| confocal | Rint = 0.057 |
| ω scans | θmax = 25.0°, θmin = 2.8° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −7→7 |
| Tmin = 0.576, Tmax = 0.820 | k = −9→10 |
| 4812 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.051 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0171P)2] where P = (Fo2 + 2Fc2)/3 |
| 1317 reflections | (Δ/σ)max = 0.001 |
| 127 parameters | Δρmax = 0.92 e Å−3 |
| 24 restraints | Δρmin = −0.78 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Tb1 | 0.33208 (4) | 0.24112 (3) | 0.086605 (17) | 0.00425 (11) | |
| K1 | 0.9670 (2) | −0.15405 (14) | 0.19899 (9) | 0.0144 (3) | |
| S1 | 0.7406 (2) | 0.16467 (15) | −0.02448 (9) | 0.0057 (3) | |
| O1 | 0.2682 (6) | 0.1255 (4) | 0.2251 (3) | 0.0079 (8) | |
| O2 | 0.6044 (6) | 0.4446 (4) | 0.1557 (2) | 0.0074 (8) | |
| O3 | 0.2189 (6) | 0.4466 (4) | 0.1717 (2) | 0.0079 (8) | |
| O4 | 0.6523 (6) | 0.1083 (4) | 0.1984 (3) | 0.0065 (8) | |
| O5 | 0.5568 (7) | 0.2364 (4) | −0.0040 (3) | 0.0077 (8) | |
| O6 | 0.7540 (6) | −0.0053 (4) | −0.0015 (3) | 0.0080 (8) | |
| O7 | 0.9493 (7) | 0.2388 (4) | 0.0409 (3) | 0.0096 (9) | |
| O8 | 0.7035 (7) | 0.1876 (5) | −0.1285 (3) | 0.0119 (9) | |
| O9 | 0.1774 (6) | 0.4070 (4) | −0.0544 (3) | 0.0072 (8) | |
| H9A | 0.285 (8) | 0.475 (6) | −0.063 (5) | 0.04 (2)* | |
| H9B | 0.047 (6) | 0.448 (9) | −0.107 (5) | 0.13 (4)* | |
| C1 | 0.4137 (9) | 0.0364 (6) | 0.2801 (4) | 0.0043 (11) | |
| C2 | 0.3644 (9) | 0.5312 (6) | 0.2329 (4) | 0.0052 (11) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Tb1 | 0.00438 (17) | 0.00457 (17) | 0.00411 (16) | 0.00031 (11) | 0.00197 (12) | 0.00024 (10) |
| K1 | 0.0141 (8) | 0.0162 (7) | 0.0164 (7) | −0.0038 (6) | 0.0099 (6) | −0.0061 (5) |
| S1 | 0.0054 (8) | 0.0063 (7) | 0.0061 (7) | −0.0002 (6) | 0.0029 (6) | −0.0010 (5) |
| O1 | 0.006 (2) | 0.009 (2) | 0.010 (2) | 0.0033 (17) | 0.0045 (18) | 0.0001 (15) |
| O2 | 0.010 (2) | 0.0070 (19) | 0.008 (2) | −0.0028 (17) | 0.0067 (18) | −0.0041 (16) |
| O3 | 0.008 (2) | 0.009 (2) | 0.006 (2) | −0.0019 (17) | 0.0013 (18) | −0.0020 (15) |
| O4 | 0.0068 (12) | 0.0062 (11) | 0.0066 (11) | −0.0001 (9) | 0.0028 (9) | −0.0002 (8) |
| O5 | 0.011 (2) | 0.0047 (19) | 0.013 (2) | 0.0011 (16) | 0.0096 (18) | −0.0002 (14) |
| O6 | 0.011 (2) | 0.0035 (19) | 0.010 (2) | −0.0010 (17) | 0.0048 (17) | −0.0014 (14) |
| O7 | 0.008 (2) | 0.009 (2) | 0.012 (2) | 0.0002 (17) | 0.0041 (18) | 0.0008 (16) |
| O8 | 0.016 (3) | 0.014 (2) | 0.008 (2) | −0.0015 (19) | 0.0071 (19) | 0.0010 (16) |
| O9 | 0.0063 (12) | 0.0077 (12) | 0.0083 (11) | −0.0003 (9) | 0.0036 (9) | 0.0017 (8) |
| C1 | 0.0048 (14) | 0.0036 (14) | 0.0043 (13) | 0.0005 (9) | 0.0015 (10) | −0.0011 (9) |
| C2 | 0.0052 (14) | 0.0046 (14) | 0.0057 (14) | 0.0003 (9) | 0.0019 (10) | 0.0010 (9) |
Geometric parameters (Å, °)
| Tb1—O6i | 2.311 (4) | S1—O5 | 1.476 (3) |
| Tb1—O5 | 2.323 (3) | S1—O6 | 1.480 (4) |
| Tb1—O7ii | 2.325 (4) | O1—C1 | 1.238 (6) |
| Tb1—O9 | 2.375 (4) | O1—K1vii | 2.900 (3) |
| Tb1—O4 | 2.382 (4) | O1—K1ii | 3.016 (4) |
| Tb1—O2 | 2.406 (4) | O2—C1vii | 1.261 (5) |
| Tb1—O3 | 2.419 (3) | O2—K1viii | 2.909 (4) |
| Tb1—O1 | 2.423 (3) | O3—C2 | 1.250 (6) |
| K1—O8iii | 2.733 (4) | O3—K1vii | 2.744 (3) |
| K1—O3iv | 2.744 (3) | O4—C2iv | 1.238 (6) |
| K1—O1iv | 2.900 (3) | O4—K1viii | 3.105 (4) |
| K1—O9i | 2.903 (4) | O6—Tb1i | 2.311 (4) |
| K1—O2v | 2.909 (4) | O7—Tb1vi | 2.325 (4) |
| K1—O6 | 2.992 (4) | O8—K1iii | 2.733 (4) |
| K1—O1vi | 3.016 (4) | O9—K1i | 2.903 (4) |
| K1—O4 | 3.032 (4) | O9—H9A | 0.96 (6) |
| K1—O4v | 3.105 (4) | O9—H9B | 0.97 (6) |
| K1—C2iv | 3.132 (5) | C1—O2iv | 1.261 (5) |
| K1—C1vi | 3.141 (6) | C1—C2iv | 1.532 (7) |
| K1—S1iii | 3.7251 (18) | C2—O4vii | 1.238 (6) |
| S1—O8 | 1.455 (4) | C2—C1vii | 1.532 (7) |
| S1—O7 | 1.470 (4) | ||
| O6i—Tb1—O5 | 75.84 (12) | O1vi—K1—O4 | 80.09 (10) |
| O6i—Tb1—O7ii | 80.00 (13) | O8iii—K1—O4v | 60.90 (11) |
| O5—Tb1—O7ii | 132.93 (13) | O3iv—K1—O4v | 110.83 (11) |
| O6i—Tb1—O9 | 96.65 (12) | O1iv—K1—O4v | 80.67 (10) |
| O5—Tb1—O9 | 70.62 (12) | O9i—K1—O4v | 80.98 (10) |
| O7ii—Tb1—O9 | 72.86 (12) | O2v—K1—O4v | 57.98 (10) |
| O5—Tb1—O4 | 78.58 (12) | O6—K1—O4v | 136.94 (9) |
| O7ii—Tb1—O4 | 138.98 (12) | O1vi—K1—O4v | 95.21 (11) |
| O9—Tb1—O4 | 147.42 (11) | O4—K1—O4v | 153.72 (5) |
| O6i—Tb1—O2 | 146.78 (11) | O8—S1—O7 | 111.1 (2) |
| O5—Tb1—O2 | 74.00 (11) | O8—S1—O5 | 109.5 (2) |
| O7ii—Tb1—O2 | 131.70 (12) | O7—S1—O5 | 108.3 (2) |
| O9—Tb1—O2 | 86.26 (13) | O8—S1—O6 | 109.8 (2) |
| O4—Tb1—O2 | 75.09 (13) | O7—S1—O6 | 108.2 (2) |
| O6i—Tb1—O3 | 147.54 (12) | O5—S1—O6 | 109.9 (2) |
| O5—Tb1—O3 | 133.59 (11) | C1—O1—Tb1 | 117.0 (3) |
| O7ii—Tb1—O3 | 69.30 (12) | C1—O1—K1vii | 122.4 (3) |
| O4—Tb1—O3 | 110.60 (12) | Tb1—O1—K1vii | 110.02 (12) |
| O2—Tb1—O3 | 65.64 (12) | C1—O1—K1ii | 84.2 (3) |
| O6i—Tb1—O1 | 90.64 (12) | Tb1—O1—K1ii | 121.87 (14) |
| O5—Tb1—O1 | 144.76 (13) | K1vii—O1—K1ii | 98.21 (10) |
| O9—Tb1—O1 | 144.20 (12) | C1vii—O2—Tb1 | 119.4 (3) |
| O4—Tb1—O1 | 67.90 (12) | C1vii—O2—K1viii | 88.6 (3) |
| O2—Tb1—O1 | 106.20 (11) | Tb1—O2—K1viii | 116.49 (13) |
| O3—Tb1—O1 | 71.38 (11) | C2—O3—Tb1 | 119.0 (3) |
| O8iii—K1—O3iv | 155.77 (13) | C2—O3—K1vii | 96.0 (3) |
| O8iii—K1—O1iv | 133.26 (11) | Tb1—O3—K1vii | 115.52 (14) |
| O3iv—K1—O1iv | 59.99 (10) | C2iv—O4—Tb1 | 118.6 (3) |
| O8iii—K1—O9i | 74.43 (11) | C2iv—O4—K1 | 83.0 (3) |
| O3iv—K1—O9i | 128.67 (11) | Tb1—O4—K1 | 139.97 (14) |
| O1iv—K1—O9i | 74.15 (10) | C2iv—O4—K1viii | 105.0 (3) |
| O8iii—K1—O2v | 68.22 (11) | Tb1—O4—K1viii | 110.44 (12) |
| O3iv—K1—O2v | 87.98 (11) | K1—O4—K1viii | 93.58 (10) |
| O1iv—K1—O2v | 114.22 (11) | S1—O5—Tb1 | 149.7 (2) |
| O9i—K1—O2v | 134.04 (11) | S1—O6—Tb1i | 138.2 (2) |
| O8iii—K1—O6 | 79.21 (11) | S1—O6—K1 | 126.8 (2) |
| O3iv—K1—O6 | 112.22 (11) | Tb1i—O6—K1 | 94.79 (12) |
| O1iv—K1—O6 | 122.12 (12) | S1—O7—Tb1vi | 144.5 (2) |
| O9i—K1—O6 | 72.82 (10) | S1—O8—K1iii | 122.7 (2) |
| O2v—K1—O6 | 123.02 (10) | Tb1—O9—K1i | 95.73 (12) |
| O8iii—K1—O1vi | 63.92 (11) | Tb1—O9—H9A | 113 (4) |
| O3iv—K1—O1vi | 96.12 (11) | K1i—O9—H9A | 113 (4) |
| O1iv—K1—O1vi | 151.31 (6) | Tb1—O9—H9B | 149 (4) |
| O9i—K1—O1vi | 133.59 (10) | K1i—O9—H9B | 75 (6) |
| O2v—K1—O1vi | 44.18 (10) | H9A—O9—H9B | 97.7 (13) |
| O6—K1—O1vi | 79.92 (11) | O1—C1—O2iv | 126.4 (5) |
| O8iii—K1—O4 | 134.96 (11) | O1—C1—C2iv | 117.6 (4) |
| O3iv—K1—O4 | 45.03 (10) | O2iv—C1—C2iv | 116.0 (5) |
| O1iv—K1—O4 | 91.10 (10) | O4vii—C2—O3 | 127.1 (5) |
| O9i—K1—O4 | 120.90 (11) | O4vii—C2—C1vii | 117.8 (5) |
| O2v—K1—O4 | 104.49 (11) | O3—C2—C1vii | 115.0 (4) |
| O6—K1—O4 | 68.10 (9) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z; (iii) −x+2, −y, −z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, y−1/2, −z+1/2; (vi) x+1, y, z; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+2, y+1/2, −z+1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O9—H9A···O2ix | 0.96 (6) | 1.88 (4) | 2.731 (4) | 145 (5) |
| O9—H9B···O3x | 0.96 (6) | 1.86 (3) | 2.787 (5) | 160 (9) |
| O9—H9B···O7ix | 0.97 (6) | 2.83 (9) | 3.149 (5) | 100 (6) |
Symmetry codes: (ix) −x+1, −y+1, −z; (x) −x, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2105).
References
- Audebrand, N., Raite, S. & Louer, D. (2003). Solid State Sci 5, 783–794.
- Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Dean, P. A. W., Craig, D., Dance, I., Russell, V. & Scudder, M. (2004). Inorg. Chem 43, 443–449. [DOI] [PubMed]
- Lu, J., Li, Y., Zhao, K., Xu, J.-Q., Yu, J.-H., Li, G.-H., Zhang, X., Bie, H.-Y. & Wang, T.-G. (2004). Inorg. Chem. Commun.7, 1154–1156.
- Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019679/br2105sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019679/br2105Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report




