Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):i48. doi: 10.1107/S1600536809019679

Potassium aqua­terbium(III) oxalate sulfate

Ya-Guang Sun a,*, Mei-yan Guo a, Gang Xiong a, Bing Jiang a, Lei Wang a
PMCID: PMC2969189  PMID: 21582643

Abstract

Single crystals of KTb(C2O4)(SO4)(H2O), potassium aqua­terbium(III) oxalate sulfate, were obtained under hydro­thermal conditions. In the crystal structure, the Tb(III) atom is coordinated by four O atoms from two oxalate anions, three O atoms from three sulfate anions and one O atom from a water mol­ecule within a TbO8 distorted square antiprismatic coordination. The potassium and terbium(III) atoms are bridged by the oxalate and sulfate groups, forming a three-dimensional structure. The coordination mode of the oxalate has not yet been reported. O—H⋯O hydrogen bonding between the water molecules and the oxygen atoms of oxalate and sulfate anions is also observed.

Related literature

For oxaltes and their coordination modes, see: Audebrand et al. (2003); Dean et al. (2004); Lu et al. (2004).

Experimental

Crystal data

  • KTb(C2O4)(SO4)(H2O)

  • M r = 400.14

  • Monoclinic, Inline graphic

  • a = 6.5274 (13) Å

  • b = 8.5072 (17) Å

  • c = 14.591 (4) Å

  • β = 112.65 (3)°

  • V = 747.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.32 mm−1

  • T = 113 K

  • 0.06 × 0.04 × 0.02 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.576, T max = 0.820

  • 4812 measured reflections

  • 1317 independent reflections

  • 1079 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.051

  • S = 1.05

  • 1317 reflections

  • 127 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019679/br2105sup1.cif

e-65-00i48-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019679/br2105Isup2.hkl

e-65-00i48-Isup2.hkl (65.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O2i 0.96 (6) 1.88 (4) 2.731 (4) 145 (5)
O9—H9B⋯O3ii 0.96 (6) 1.86 (3) 2.787 (5) 160 (9)
O9—H9B⋯O7i 0.97 (6) 2.83 (9) 3.149 (5) 100 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was sponsored by SRF for ROCS, SEM, and the Research Foundation of Education Department of Liaoning Province (No. 2008581).

supplementary crystallographic information

Comment

Recently, rationally design of novel inorganic componds based on alkali metal ions and rare earth ions are currently of great interest because of their potential applications in photoluminescent fields. For purpose of enriching the chemistry field of this compound family, we have successfully synthesized the title compound.

In the title compound, the coordination environments of the rare earth TbIII cations consist of eight O atoms which are associated with one water molecule, two sulfate groups and two oxalates. TbIII cations are at the shared apex of two dicapped rectangular pyramids (Fig.1). The K+ cations are surrounded by nine O atoms, including one water O atom, six O atoms from oxalates and two O atoms from sulfate groups.

Oxalates are of considerable interest because many of them are natural minerals and in addition, the oxalate anion can adopt different coordination modes to bind metals to form infinite chains, sheets and networks, leading to the rich structural chemistry (Lu et al., 2004; Dean et al., 2004; Audebrand et al., 2003). In the title compound, the oxalate ligand has an unique coordination mode (κ324)-(κ324)-µ6-ox2-. Fig.2 shows coordination mode of the oxalate and sulfate ligands in the title compuond.

Two adjacent TbIII ions were connected through the oxalates to form one-dimensional chain structure (see Fig.3), and then were connected through the sulfate anions and water molecules to form the three-dimensional framework (see Fig.4).

Experimental

A mixture of FeSO4.7H2O (0.1 mmol),Tb(NO3)3.5H2O (0.1 mmol) and oxalic acid (0.2 mmol) in H2O (10 mL) was adjust to pH=6.8 with KOH aqueous solution, sealed in a 25 mL Teflon-lined bomb at 430 K for 4 days and then slowly cooled to room temperature at a rate of 5° K per hour. Colorless block crystals were obtained by filtration.The structure was determined by single-crystal diffraction.

Refinement

Water H atoms were located in a difference Fourier maps and refined to restraint with O—H distance of 0.97Å and Uĩso(H) = 1.2Ueq(O). In order improve the R and wR factors,weak diffraction reflections in high 2 theta angles were omitted.Because of difficulties in obtaining convergence in the refinement the anisotropy of the atomic displacement parameters of some O and C atoms were restrained.

Figures

Fig. 1.

Fig. 1.

A view of the environment of (a) the Tb atom, The symmetry codes are in Table 1.Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of coordination modes of (a)the Oxalate and (b) the sulfate anion.

Fig. 3.

Fig. 3.

The one-dimensional chain structure of the KTb(SO4)(C2O4)(H2O) along c axis(hydrogen atoms omitted).

Fig. 4.

Fig. 4.

The structural arrangement of KTb(SO4)(C2O4)(H2O) along b axis(hydrogen and potassium atoms omitted).The green polyhedras are TbO8.

Crystal data

KTb(C2O4)(SO4)(H2O) F(000) = 744
Mr = 400.14 Dx = 3.554 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1317 reflections
a = 6.5274 (13) Å θ = 2.8–27.2°
b = 8.5072 (17) Å µ = 10.32 mm1
c = 14.591 (4) Å T = 113 K
β = 112.65 (3)° Block, colorless
V = 747.7 (3) Å3 0.06 × 0.04 × 0.02 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 1317 independent reflections
Radiation source: rotating anode 1079 reflections with I > 2σ(I)
confocal Rint = 0.057
ω scans θmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −7→7
Tmin = 0.576, Tmax = 0.820 k = −9→10
4812 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0171P)2] where P = (Fo2 + 2Fc2)/3
1317 reflections (Δ/σ)max = 0.001
127 parameters Δρmax = 0.92 e Å3
24 restraints Δρmin = −0.78 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Tb1 0.33208 (4) 0.24112 (3) 0.086605 (17) 0.00425 (11)
K1 0.9670 (2) −0.15405 (14) 0.19899 (9) 0.0144 (3)
S1 0.7406 (2) 0.16467 (15) −0.02448 (9) 0.0057 (3)
O1 0.2682 (6) 0.1255 (4) 0.2251 (3) 0.0079 (8)
O2 0.6044 (6) 0.4446 (4) 0.1557 (2) 0.0074 (8)
O3 0.2189 (6) 0.4466 (4) 0.1717 (2) 0.0079 (8)
O4 0.6523 (6) 0.1083 (4) 0.1984 (3) 0.0065 (8)
O5 0.5568 (7) 0.2364 (4) −0.0040 (3) 0.0077 (8)
O6 0.7540 (6) −0.0053 (4) −0.0015 (3) 0.0080 (8)
O7 0.9493 (7) 0.2388 (4) 0.0409 (3) 0.0096 (9)
O8 0.7035 (7) 0.1876 (5) −0.1285 (3) 0.0119 (9)
O9 0.1774 (6) 0.4070 (4) −0.0544 (3) 0.0072 (8)
H9A 0.285 (8) 0.475 (6) −0.063 (5) 0.04 (2)*
H9B 0.047 (6) 0.448 (9) −0.107 (5) 0.13 (4)*
C1 0.4137 (9) 0.0364 (6) 0.2801 (4) 0.0043 (11)
C2 0.3644 (9) 0.5312 (6) 0.2329 (4) 0.0052 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tb1 0.00438 (17) 0.00457 (17) 0.00411 (16) 0.00031 (11) 0.00197 (12) 0.00024 (10)
K1 0.0141 (8) 0.0162 (7) 0.0164 (7) −0.0038 (6) 0.0099 (6) −0.0061 (5)
S1 0.0054 (8) 0.0063 (7) 0.0061 (7) −0.0002 (6) 0.0029 (6) −0.0010 (5)
O1 0.006 (2) 0.009 (2) 0.010 (2) 0.0033 (17) 0.0045 (18) 0.0001 (15)
O2 0.010 (2) 0.0070 (19) 0.008 (2) −0.0028 (17) 0.0067 (18) −0.0041 (16)
O3 0.008 (2) 0.009 (2) 0.006 (2) −0.0019 (17) 0.0013 (18) −0.0020 (15)
O4 0.0068 (12) 0.0062 (11) 0.0066 (11) −0.0001 (9) 0.0028 (9) −0.0002 (8)
O5 0.011 (2) 0.0047 (19) 0.013 (2) 0.0011 (16) 0.0096 (18) −0.0002 (14)
O6 0.011 (2) 0.0035 (19) 0.010 (2) −0.0010 (17) 0.0048 (17) −0.0014 (14)
O7 0.008 (2) 0.009 (2) 0.012 (2) 0.0002 (17) 0.0041 (18) 0.0008 (16)
O8 0.016 (3) 0.014 (2) 0.008 (2) −0.0015 (19) 0.0071 (19) 0.0010 (16)
O9 0.0063 (12) 0.0077 (12) 0.0083 (11) −0.0003 (9) 0.0036 (9) 0.0017 (8)
C1 0.0048 (14) 0.0036 (14) 0.0043 (13) 0.0005 (9) 0.0015 (10) −0.0011 (9)
C2 0.0052 (14) 0.0046 (14) 0.0057 (14) 0.0003 (9) 0.0019 (10) 0.0010 (9)

Geometric parameters (Å, °)

Tb1—O6i 2.311 (4) S1—O5 1.476 (3)
Tb1—O5 2.323 (3) S1—O6 1.480 (4)
Tb1—O7ii 2.325 (4) O1—C1 1.238 (6)
Tb1—O9 2.375 (4) O1—K1vii 2.900 (3)
Tb1—O4 2.382 (4) O1—K1ii 3.016 (4)
Tb1—O2 2.406 (4) O2—C1vii 1.261 (5)
Tb1—O3 2.419 (3) O2—K1viii 2.909 (4)
Tb1—O1 2.423 (3) O3—C2 1.250 (6)
K1—O8iii 2.733 (4) O3—K1vii 2.744 (3)
K1—O3iv 2.744 (3) O4—C2iv 1.238 (6)
K1—O1iv 2.900 (3) O4—K1viii 3.105 (4)
K1—O9i 2.903 (4) O6—Tb1i 2.311 (4)
K1—O2v 2.909 (4) O7—Tb1vi 2.325 (4)
K1—O6 2.992 (4) O8—K1iii 2.733 (4)
K1—O1vi 3.016 (4) O9—K1i 2.903 (4)
K1—O4 3.032 (4) O9—H9A 0.96 (6)
K1—O4v 3.105 (4) O9—H9B 0.97 (6)
K1—C2iv 3.132 (5) C1—O2iv 1.261 (5)
K1—C1vi 3.141 (6) C1—C2iv 1.532 (7)
K1—S1iii 3.7251 (18) C2—O4vii 1.238 (6)
S1—O8 1.455 (4) C2—C1vii 1.532 (7)
S1—O7 1.470 (4)
O6i—Tb1—O5 75.84 (12) O1vi—K1—O4 80.09 (10)
O6i—Tb1—O7ii 80.00 (13) O8iii—K1—O4v 60.90 (11)
O5—Tb1—O7ii 132.93 (13) O3iv—K1—O4v 110.83 (11)
O6i—Tb1—O9 96.65 (12) O1iv—K1—O4v 80.67 (10)
O5—Tb1—O9 70.62 (12) O9i—K1—O4v 80.98 (10)
O7ii—Tb1—O9 72.86 (12) O2v—K1—O4v 57.98 (10)
O5—Tb1—O4 78.58 (12) O6—K1—O4v 136.94 (9)
O7ii—Tb1—O4 138.98 (12) O1vi—K1—O4v 95.21 (11)
O9—Tb1—O4 147.42 (11) O4—K1—O4v 153.72 (5)
O6i—Tb1—O2 146.78 (11) O8—S1—O7 111.1 (2)
O5—Tb1—O2 74.00 (11) O8—S1—O5 109.5 (2)
O7ii—Tb1—O2 131.70 (12) O7—S1—O5 108.3 (2)
O9—Tb1—O2 86.26 (13) O8—S1—O6 109.8 (2)
O4—Tb1—O2 75.09 (13) O7—S1—O6 108.2 (2)
O6i—Tb1—O3 147.54 (12) O5—S1—O6 109.9 (2)
O5—Tb1—O3 133.59 (11) C1—O1—Tb1 117.0 (3)
O7ii—Tb1—O3 69.30 (12) C1—O1—K1vii 122.4 (3)
O4—Tb1—O3 110.60 (12) Tb1—O1—K1vii 110.02 (12)
O2—Tb1—O3 65.64 (12) C1—O1—K1ii 84.2 (3)
O6i—Tb1—O1 90.64 (12) Tb1—O1—K1ii 121.87 (14)
O5—Tb1—O1 144.76 (13) K1vii—O1—K1ii 98.21 (10)
O9—Tb1—O1 144.20 (12) C1vii—O2—Tb1 119.4 (3)
O4—Tb1—O1 67.90 (12) C1vii—O2—K1viii 88.6 (3)
O2—Tb1—O1 106.20 (11) Tb1—O2—K1viii 116.49 (13)
O3—Tb1—O1 71.38 (11) C2—O3—Tb1 119.0 (3)
O8iii—K1—O3iv 155.77 (13) C2—O3—K1vii 96.0 (3)
O8iii—K1—O1iv 133.26 (11) Tb1—O3—K1vii 115.52 (14)
O3iv—K1—O1iv 59.99 (10) C2iv—O4—Tb1 118.6 (3)
O8iii—K1—O9i 74.43 (11) C2iv—O4—K1 83.0 (3)
O3iv—K1—O9i 128.67 (11) Tb1—O4—K1 139.97 (14)
O1iv—K1—O9i 74.15 (10) C2iv—O4—K1viii 105.0 (3)
O8iii—K1—O2v 68.22 (11) Tb1—O4—K1viii 110.44 (12)
O3iv—K1—O2v 87.98 (11) K1—O4—K1viii 93.58 (10)
O1iv—K1—O2v 114.22 (11) S1—O5—Tb1 149.7 (2)
O9i—K1—O2v 134.04 (11) S1—O6—Tb1i 138.2 (2)
O8iii—K1—O6 79.21 (11) S1—O6—K1 126.8 (2)
O3iv—K1—O6 112.22 (11) Tb1i—O6—K1 94.79 (12)
O1iv—K1—O6 122.12 (12) S1—O7—Tb1vi 144.5 (2)
O9i—K1—O6 72.82 (10) S1—O8—K1iii 122.7 (2)
O2v—K1—O6 123.02 (10) Tb1—O9—K1i 95.73 (12)
O8iii—K1—O1vi 63.92 (11) Tb1—O9—H9A 113 (4)
O3iv—K1—O1vi 96.12 (11) K1i—O9—H9A 113 (4)
O1iv—K1—O1vi 151.31 (6) Tb1—O9—H9B 149 (4)
O9i—K1—O1vi 133.59 (10) K1i—O9—H9B 75 (6)
O2v—K1—O1vi 44.18 (10) H9A—O9—H9B 97.7 (13)
O6—K1—O1vi 79.92 (11) O1—C1—O2iv 126.4 (5)
O8iii—K1—O4 134.96 (11) O1—C1—C2iv 117.6 (4)
O3iv—K1—O4 45.03 (10) O2iv—C1—C2iv 116.0 (5)
O1iv—K1—O4 91.10 (10) O4vii—C2—O3 127.1 (5)
O9i—K1—O4 120.90 (11) O4vii—C2—C1vii 117.8 (5)
O2v—K1—O4 104.49 (11) O3—C2—C1vii 115.0 (4)
O6—K1—O4 68.10 (9)

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z; (iii) −x+2, −y, −z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+2, y−1/2, −z+1/2; (vi) x+1, y, z; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O9—H9A···O2ix 0.96 (6) 1.88 (4) 2.731 (4) 145 (5)
O9—H9B···O3x 0.96 (6) 1.86 (3) 2.787 (5) 160 (9)
O9—H9B···O7ix 0.97 (6) 2.83 (9) 3.149 (5) 100 (6)

Symmetry codes: (ix) −x+1, −y+1, −z; (x) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2105).

References

  1. Audebrand, N., Raite, S. & Louer, D. (2003). Solid State Sci 5, 783–794.
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dean, P. A. W., Craig, D., Dance, I., Russell, V. & Scudder, M. (2004). Inorg. Chem 43, 443–449. [DOI] [PubMed]
  5. Lu, J., Li, Y., Zhao, K., Xu, J.-Q., Yu, J.-H., Li, G.-H., Zhang, X., Bie, H.-Y. & Wang, T.-G. (2004). Inorg. Chem. Commun.7, 1154–1156.
  6. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809019679/br2105sup1.cif

e-65-00i48-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019679/br2105Isup2.hkl

e-65-00i48-Isup2.hkl (65.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES