Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1654. doi: 10.1107/S1600536809022806

N,N′-Dimethyl-N,N′-diphenyl-3-oxa­penta­nediamide

Shaohong Yin a, Yu Cui a, Guangpu Wu a, Qi You a, Guoxin Sun a,*
PMCID: PMC2969191  PMID: 21582917

Abstract

In the title compound, C18H20N2O3, the two phenyl rings, adopt opposite orientations in the backbone and are oriented at a dihedral angle of 36.66 (3)°. In the crystal, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For a related structure, see: Zhang et al. (2001). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1654-scheme1.jpg

Experimental

Crystal data

  • C18H20N2O3

  • M r = 312.36

  • Monoclinic, Inline graphic

  • a = 10.7607 (11) Å

  • b = 10.7552 (12) Å

  • c = 14.7054 (14) Å

  • β = 102.897 (1)°

  • V = 1659.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.42 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.959, T max = 0.965

  • 8254 measured reflections

  • 2897 independent reflections

  • 1644 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.159

  • S = 1.04

  • 2897 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022806/hk2708sup1.cif

e-65-o1654-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022806/hk2708Isup2.hkl

e-65-o1654-Isup2.hkl (142.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.53 3.436 (3) 165
C9—H9⋯O1ii 0.93 2.47 3.337 (3) 155
C12—H12B⋯O1iii 0.96 2.48 3.346 (3) 151
C17—H17⋯O2iv 0.93 2.52 3.432 (3) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the National Science Foundation of China (grant No. 203010008), the Science Foundation of Shandong Province (grant No. Q2003B01) and Key Subject Research Foundation of Shandong Province for support of this work.

supplementary crystallographic information

Comment

3-Oxapentanediamide derivatives show a highly selective complexation of lanthanide. We are interested in their performance to extract lanthanide ions. To obtain more information on the structural character and the reactivity of ligand with different lanthanide ions, we report herein the crystal structure of the title compound.

In the structure of the title compound (Fig 1), the bond lengths and angles are within normal ranges (Allen et al., 1987) and may be compared with the corresponding values in N,N'-diethyl-N,N'-diphenyl-3-oxapentanediamide (Zhang et al., 2001). The framework of the molecule is composed of a zigzag chain (C2—C1—O3—C10—C11) with two methylphenyl amide terminal groups. An interesting aspect of the molecular conformation concerns the two phenyl rings, which adopt opposite orientations in the backbone, and they are oriented at a dihedral angle of 36.66 (3)°. The moieties (O1/O3/N1/C1-C3) and (O2/N2/C10-C13) are planar [with maximum deviations of -0.036 (3) and 0.021 (3) Å for atoms C3 and C10, respectively] and the dihedral angle between them is 24.67 (3)°, which are oriented with respect to the adjacent rings A (C4-C9) and B (C13-C18) at dihedral angles of 72.97 (4) and 70.17 (3) °, respectively. Intramolecular C-H···O interactions (Table 1) result in the formation of a six-membered ring C (O1/O3/C1/C2/C10/H10B) having twisted conformation, and two five-membered rings D (O1/N1/C2/C3/H3A) and E (O2/N2/C11/C12/H12C) having envelope conformations with atoms H3A and H12C displaced by -0.415 (4) and -0.257 (5) Å. In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a three-dimensional network.

Experimental

For the preparation of the title compound, a solution of diglycolic chloride (10 mmol) in anhydrous benzene (3 ml) was added dropwise to a mixture of N-methylphenylamine (25 mmol), anhydrous pyridine (2 ml) in anhydrous benzene (12.5 ml) in the ice-water bath. The mixture was stirred for 3 h, and then for another 3 h at room temperature. The crude product was recrystallized from toluene as the white solid (yield; 65%, m.p. 375 K). Crystals suitable for X-ray analysis were obtained from toluene by slow evaporation over a period of several days. C18H20N2O3: C 69.21, H 6.45, N 8.97%; found: C 69.09, H 6.32, N 8.78%. IR (KBr): v = 3056, 2973, 1666, 1593, 1497, 1120, 782, 704 cm -1.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H20N2O3 F(000) = 664
Mr = 312.36 Dx = 1.251 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1991 reflections
a = 10.7607 (11) Å θ = 2.7–21.6°
b = 10.7552 (12) Å µ = 0.09 mm1
c = 14.7054 (14) Å T = 298 K
β = 102.897 (1)° Block, yellow
V = 1659.0 (3) Å3 0.49 × 0.48 × 0.42 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2897 independent reflections
Radiation source: fine-focus sealed tube 1644 reflections with I > 2σ(I)
graphite Rint = 0.082
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.959, Tmax = 0.965 k = −12→12
8254 measured reflections l = −13→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.3091P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2897 reflections Δρmax = 0.18 e Å3
209 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.090 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.95256 (18) 0.09798 (18) 0.10834 (12) 0.0572 (6)
O2 0.5541 (2) −0.1836 (2) 0.01992 (14) 0.0863 (8)
O3 0.7658 (2) −0.05186 (17) 0.01250 (12) 0.0628 (6)
N1 0.94306 (19) 0.2313 (2) −0.01069 (13) 0.0462 (6)
N2 0.5968 (2) −0.1632 (2) 0.17586 (15) 0.0557 (7)
C1 0.7998 (3) 0.0548 (3) −0.03176 (18) 0.0650 (9)
H1A 0.7254 0.1077 −0.0500 0.078*
H1B 0.8257 0.0297 −0.0881 0.078*
C2 0.9057 (2) 0.1288 (2) 0.02810 (16) 0.0446 (7)
C3 1.0382 (3) 0.3113 (3) 0.0461 (2) 0.0702 (9)
H3A 1.0361 0.3012 0.1106 0.105*
H3B 1.0202 0.3963 0.0281 0.105*
H3C 1.1211 0.2892 0.0373 0.105*
C4 0.9035 (2) 0.2600 (2) −0.10801 (16) 0.0441 (7)
C5 0.8270 (3) 0.3608 (3) −0.1366 (2) 0.0569 (8)
H5 0.7985 0.4094 −0.0931 0.068*
C6 0.7922 (3) 0.3901 (3) −0.2303 (2) 0.0705 (9)
H6 0.7404 0.4587 −0.2496 0.085*
C7 0.8333 (3) 0.3192 (3) −0.2946 (2) 0.0664 (9)
H7 0.8093 0.3393 −0.3576 0.080*
C8 0.9092 (3) 0.2192 (3) −0.26665 (19) 0.0607 (8)
H8 0.9370 0.1708 −0.3107 0.073*
C9 0.9458 (3) 0.1887 (3) −0.17269 (18) 0.0527 (7)
H9 0.9985 0.1207 −0.1536 0.063*
C10 0.7034 (3) −0.0267 (3) 0.08526 (18) 0.0586 (8)
H10A 0.6570 0.0510 0.0734 0.070*
H10B 0.7655 −0.0194 0.1440 0.070*
C11 0.6129 (3) −0.1313 (3) 0.09046 (19) 0.0546 (8)
C12 0.5068 (3) −0.2618 (3) 0.1840 (2) 0.0853 (11)
H12A 0.4299 −0.2257 0.1951 0.128*
H12B 0.5438 −0.3154 0.2350 0.128*
H12C 0.4873 −0.3090 0.1272 0.128*
C13 0.6656 (2) −0.1065 (3) 0.26044 (17) 0.0462 (7)
C14 0.6387 (3) 0.0131 (3) 0.2830 (2) 0.0600 (8)
H14 0.5744 0.0576 0.2437 0.072*
C15 0.7064 (3) 0.0669 (3) 0.3633 (2) 0.0710 (9)
H15 0.6894 0.1485 0.3775 0.085*
C16 0.7991 (3) 0.0009 (4) 0.4227 (2) 0.0725 (10)
H16 0.8451 0.0376 0.4772 0.087*
C17 0.8238 (3) −0.1183 (3) 0.4018 (2) 0.0695 (9)
H17 0.8863 −0.1634 0.4424 0.083*
C18 0.7570 (3) −0.1728 (3) 0.32081 (19) 0.0571 (8)
H18 0.7739 −0.2546 0.3071 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0702 (13) 0.0581 (13) 0.0402 (11) −0.0074 (10) 0.0056 (9) 0.0084 (9)
O2 0.1040 (18) 0.0934 (18) 0.0524 (13) −0.0513 (15) −0.0021 (12) 0.0040 (11)
O3 0.0947 (16) 0.0526 (12) 0.0479 (11) −0.0247 (11) 0.0302 (10) −0.0064 (9)
N1 0.0509 (13) 0.0468 (14) 0.0388 (12) −0.0111 (11) 0.0058 (9) 0.0034 (10)
N2 0.0516 (14) 0.0659 (16) 0.0478 (14) −0.0184 (12) 0.0072 (10) 0.0103 (11)
C1 0.083 (2) 0.067 (2) 0.0435 (16) −0.0325 (18) 0.0119 (15) 0.0048 (14)
C2 0.0552 (16) 0.0431 (16) 0.0366 (14) −0.0029 (14) 0.0128 (12) 0.0022 (12)
C3 0.079 (2) 0.072 (2) 0.0536 (18) −0.0309 (18) 0.0008 (15) 0.0019 (15)
C4 0.0427 (14) 0.0477 (17) 0.0411 (14) −0.0096 (13) 0.0076 (11) 0.0079 (12)
C5 0.0528 (17) 0.0564 (19) 0.0620 (18) 0.0019 (15) 0.0139 (13) 0.0108 (15)
C6 0.060 (2) 0.077 (2) 0.071 (2) 0.0115 (18) 0.0072 (16) 0.0285 (18)
C7 0.063 (2) 0.080 (2) 0.0493 (18) −0.0150 (19) −0.0014 (15) 0.0205 (17)
C8 0.072 (2) 0.066 (2) 0.0464 (16) −0.0141 (18) 0.0179 (14) 0.0011 (15)
C9 0.0584 (17) 0.0523 (18) 0.0487 (16) −0.0005 (14) 0.0145 (13) 0.0074 (13)
C10 0.077 (2) 0.0569 (19) 0.0455 (16) −0.0217 (16) 0.0215 (14) −0.0025 (13)
C11 0.0559 (17) 0.0565 (19) 0.0474 (16) −0.0150 (15) 0.0026 (13) 0.0071 (14)
C12 0.079 (2) 0.103 (3) 0.072 (2) −0.045 (2) 0.0125 (17) 0.0183 (19)
C13 0.0412 (15) 0.0555 (18) 0.0448 (15) −0.0020 (13) 0.0157 (12) 0.0087 (13)
C14 0.0534 (18) 0.066 (2) 0.0649 (19) 0.0166 (16) 0.0217 (15) 0.0113 (16)
C15 0.087 (3) 0.066 (2) 0.069 (2) 0.0054 (19) 0.037 (2) −0.0047 (18)
C16 0.084 (2) 0.086 (3) 0.0507 (18) −0.010 (2) 0.0202 (17) −0.0075 (18)
C17 0.069 (2) 0.085 (3) 0.0507 (18) 0.0095 (19) 0.0052 (15) 0.0092 (17)
C18 0.0613 (18) 0.0565 (19) 0.0524 (17) 0.0149 (15) 0.0100 (14) 0.0088 (14)

Geometric parameters (Å, °)

O1—C2 1.221 (3) C7—C8 1.358 (4)
O2—C11 1.225 (3) C7—H7 0.9300
O3—C1 1.407 (3) C8—C9 1.389 (4)
O3—C10 1.410 (3) C8—H8 0.9300
N1—C2 1.343 (3) C9—H9 0.9300
N1—C4 1.433 (3) C10—C11 1.501 (4)
N1—C3 1.450 (3) C10—H10A 0.9700
N2—C11 1.350 (3) C10—H10B 0.9700
N2—C13 1.434 (3) C12—H12A 0.9600
N2—C12 1.459 (4) C12—H12B 0.9600
C1—C2 1.504 (4) C12—H12C 0.9600
C1—H1A 0.9700 C13—C18 1.369 (4)
C1—H1B 0.9700 C13—C14 1.376 (4)
C3—H3A 0.9600 C14—C15 1.369 (4)
C3—H3B 0.9600 C14—H14 0.9300
C3—H3C 0.9600 C15—C16 1.368 (4)
C4—C5 1.370 (4) C15—H15 0.9300
C4—C9 1.376 (4) C16—C17 1.359 (5)
C5—C6 1.381 (4) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.377 (4)
C6—C7 1.363 (4) C17—H17 0.9300
C6—H6 0.9300 C18—H18 0.9300
C1—O3—C10 114.3 (2) C4—C9—C8 119.5 (3)
C2—N1—C4 123.4 (2) C4—C9—H9 120.2
C2—N1—C3 118.8 (2) C8—C9—H9 120.2
C4—N1—C3 117.5 (2) O3—C10—C11 108.6 (2)
C11—N2—C13 123.4 (2) O3—C10—H10A 110.0
C11—N2—C12 119.1 (2) C11—C10—H10A 110.0
C13—N2—C12 117.5 (2) O3—C10—H10B 110.0
O3—C1—C2 113.7 (2) C11—C10—H10B 110.0
O3—C1—H1A 108.8 H10A—C10—H10B 108.3
C2—C1—H1A 108.8 O2—C11—N2 121.5 (3)
O3—C1—H1B 108.8 O2—C11—C10 121.3 (2)
C2—C1—H1B 108.8 N2—C11—C10 117.2 (2)
H1A—C1—H1B 107.7 N2—C12—H12A 109.5
O1—C2—N1 122.4 (2) N2—C12—H12B 109.5
O1—C2—C1 121.2 (2) H12A—C12—H12B 109.5
N1—C2—C1 116.5 (2) N2—C12—H12C 109.5
N1—C3—H3A 109.5 H12A—C12—H12C 109.5
N1—C3—H3B 109.5 H12B—C12—H12C 109.5
H3A—C3—H3B 109.5 C18—C13—C14 119.3 (3)
N1—C3—H3C 109.5 C18—C13—N2 119.9 (3)
H3A—C3—H3C 109.5 C14—C13—N2 120.8 (2)
H3B—C3—H3C 109.5 C15—C14—C13 120.2 (3)
C5—C4—C9 119.8 (2) C15—C14—H14 119.9
C5—C4—N1 120.1 (2) C13—C14—H14 119.9
C9—C4—N1 120.0 (2) C16—C15—C14 120.2 (3)
C4—C5—C6 119.8 (3) C16—C15—H15 119.9
C4—C5—H5 120.1 C14—C15—H15 119.9
C6—C5—H5 120.1 C17—C16—C15 119.8 (3)
C7—C6—C5 120.5 (3) C17—C16—H16 120.1
C7—C6—H6 119.7 C15—C16—H16 120.1
C5—C6—H6 119.7 C16—C17—C18 120.4 (3)
C8—C7—C6 119.9 (3) C16—C17—H17 119.8
C8—C7—H7 120.0 C18—C17—H17 119.8
C6—C7—H7 120.0 C13—C18—C17 120.0 (3)
C7—C8—C9 120.4 (3) C13—C18—H18 120.0
C7—C8—H8 119.8 C17—C18—H18 120.0
C9—C8—H8 119.8
C10—O3—C1—C2 70.1 (3) C1—O3—C10—C11 149.2 (2)
C4—N1—C2—O1 170.6 (2) C13—N2—C11—O2 178.6 (3)
C3—N1—C2—O1 −2.9 (4) C12—N2—C11—O2 −0.4 (4)
C4—N1—C2—C1 −11.0 (4) C13—N2—C11—C10 −2.9 (4)
C3—N1—C2—C1 175.4 (3) C12—N2—C11—C10 178.1 (3)
O3—C1—C2—O1 −2.1 (4) O3—C10—C11—O2 −36.2 (4)
O3—C1—C2—N1 179.5 (2) O3—C10—C11—N2 145.2 (3)
C2—N1—C4—C5 113.5 (3) C11—N2—C13—C18 −109.3 (3)
C3—N1—C4—C5 −72.9 (3) C12—N2—C13—C18 69.7 (3)
C2—N1—C4—C9 −68.7 (3) C11—N2—C13—C14 72.3 (3)
C3—N1—C4—C9 104.9 (3) C12—N2—C13—C14 −108.7 (3)
C9—C4—C5—C6 0.3 (4) C18—C13—C14—C15 2.6 (4)
N1—C4—C5—C6 178.1 (2) N2—C13—C14—C15 −179.0 (2)
C4—C5—C6—C7 0.1 (4) C13—C14—C15—C16 −1.6 (4)
C5—C6—C7—C8 −0.2 (5) C14—C15—C16—C17 −0.1 (5)
C6—C7—C8—C9 −0.2 (4) C15—C16—C17—C18 0.6 (5)
C5—C4—C9—C8 −0.7 (4) C14—C13—C18—C17 −2.1 (4)
N1—C4—C9—C8 −178.5 (2) N2—C13—C18—C17 179.5 (2)
C7—C8—C9—C4 0.6 (4) C16—C17—C18—C13 0.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O1 0.96 2.36 2.707 (3) 101
C7—H7···O3i 0.93 2.53 3.436 (3) 165
C9—H9···O1ii 0.93 2.47 3.337 (3) 155
C10—H10B···O1 0.97 2.53 2.949 (3) 106
C12—H12B···O1iii 0.96 2.48 3.346 (3) 151
C12—H12C···O2 0.96 2.31 2.709 (3) 104
C17—H17···O2iv 0.93 2.52 3.432 (3) 167

Symmetry codes: (i) −x+3/2, y+1/2, −z−1/2; (ii) −x+2, −y, −z; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x+1/2, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2708).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Zhang, Y.-L., Wang, Y.-W., Li, Y.-Z., Liu, W.-S., Yu, K.-B. & Wang, L.-F. (2001). Acta Cryst. E57, o483–o484.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022806/hk2708sup1.cif

e-65-o1654-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022806/hk2708Isup2.hkl

e-65-o1654-Isup2.hkl (142.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES