Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 24;65(Pt 7):o1679. doi: 10.1107/S1600536809023800

Bis(3-hydroxy­pyridinium) fumarate

Lan Shen a, Jun-Hua Li b, Jing-Jing Nie b, Duan-Jun Xu b,*
PMCID: PMC2969193  PMID: 21582938

Abstract

The crystal structure of the title compound, 2C5H6NO2 +·C4H2O4 2−, consists of 3-hydroxy­pyridinium cations and fumarate dianions. The dianion is located on an inversion center and the cation is linked to it by O—H⋯O and N—H⋯O hydrogen bonds. The cation is twisted with respect to the anion by 24.83 (5)°.

Related literature

For general background, see: Thomas et al. (2007); Fidler et al. (2003); Zhang et al. (2004). For the ionization of hydro­pyridine in the solution, see: Lezina et al. (1981). For 3-hydro­pyridinium salts, see: Aakeroy & Nieuwenhuyzen (1994); Fukunaga et al. (2004). For co-crystals of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003); Aakeroy et al. (2002); Haynes et al. (2006); Bu et al. (2007); Xu et al. (2009). For C—O bond distances in the deprotonated carboxyl groups of fumarates, see: Liu et al. (2003); Liu & Xu (2004); Xu et al. (2009).graphic file with name e-65-o1679-scheme1.jpg

Experimental

Crystal data

  • 2C5H6NO+·C4H2O4 2−

  • M r = 306.27

  • Monoclinic, Inline graphic

  • a = 3.8037 (5) Å

  • b = 10.4798 (13) Å

  • c = 17.423 (2) Å

  • β = 90.360 (5)°

  • V = 694.52 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 K

  • 0.32 × 0.28 × 0.24 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 7561 measured reflections

  • 1359 independent reflections

  • 1237 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.07

  • 1359 reflections

  • 107 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023800/ng2594sup1.cif

e-65-o1679-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023800/ng2594Isup2.hkl

e-65-o1679-Isup2.hkl (65.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.893 (12) 1.687 (12) 2.5774 (14) 175.2 (18)
O3—H3A⋯O2i 0.839 (14) 1.751 (15) 2.5831 (15) 171.5 (16)

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the ZIJIN Project of Zhejiang University, China.

supplementary crystallographic information

Comment

The hydropyridine derivatives and the fumaric acid have been extensively applied in biological and medicine fields (Zhang et al., 2004; Thomas et al., 2007; Fidler et al., 2003). Although the carboxyl group of the fumaric acid is usually deprotonated while the pyridine derivatives are protonated in the solution (Lezina et al., 1981), some crystal structures showed that they also exist as co-crystal of neutral molecules (Bowes et al. 2003; Aakeroy et al., 2002; Haynes et al. 2006; Xu et al. 2009). Herein we report the crystal structure of the title compound containing pyridine derivative and fumaric acid components.

The crystal structure of the title compond consists of fumarate anions and 3-hydroxypyridinium cations (Fig. 1). The planar fumarate anion is located in an inversion center. The C1—O1 bond distance of 1.2603 (15) Å is similar to C1—O2 bond distance of 1.2452 (15) Å, it agrees with those found in metal complexes of fumarate (Liu et al. 2003; Liu & Xu, 2004).

The 3-hydroxypyridine is protonated in the crystal structure, the geometry data is consistent with those in crystal structures of 3-hydroxypyridinium hydrogen L-malate (Aakeroy & Nieuwenhuyzen, 1994) and 3-hydroxypyridinium hydrogen tartronate (Fukunaga et al. 2004).

In the crystal structure the planar hydroxypyridinium cation is twisted respect to the planar fumarate with a dihedral angle of 24.83 (5)°, and links with the fumarate anions via N—H···O and O—H···O hydrogen bonding (Table 1 and Fig. 2).

Experimental

Reagents and solvent were used as purchased without further purification. 3-Hydroxypyridine (2 mmol) and fumaric acid (1 mmol) were dissolved in ethanol (5 ml) at room temperature. The single crystals were obtained from the solution after one week.

Refinement

H atoms bonded to N and O atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.82±0.01 and N—H = 0.86±0.01 Å; Uiso(H) = 1.5Ueq(N,O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding [symmetry code: (i) 1 - x, 1 - y, 1 - z].

Fig. 2.

Fig. 2.

The unit cell packing diagram showing O—H···O and N—H···O hydrogen bonding (dashed lines) [symmetry code: (ii) -x + 1/2, y + 1/2, -z + 1/2].

Crystal data

2C5H6NO+·C4H2O42 F(000) = 320
Mr = 306.27 Dx = 1.465 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2322 reflections
a = 3.8037 (5) Å θ = 2.4–24.6°
b = 10.4798 (13) Å µ = 0.12 mm1
c = 17.423 (2) Å T = 294 K
β = 90.360 (5)° Prism, colorless
V = 694.52 (15) Å3 0.32 × 0.28 × 0.24 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer 1237 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
graphite θmax = 26.0°, θmin = 2.3°
ω scans h = −4→4
7561 measured reflections k = −12→12
1359 independent reflections l = −20→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1474P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
1359 reflections Δρmax = 0.25 e Å3
107 parameters Δρmin = −0.14 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.116 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0136 (3) 0.56088 (11) 0.76518 (6) 0.0373 (3)
O1 0.2604 (3) 0.49000 (9) 0.63451 (5) 0.0489 (3)
O2 0.4289 (3) 0.69067 (9) 0.62330 (5) 0.0568 (4)
O3 −0.2084 (3) 0.39098 (10) 0.93748 (6) 0.0559 (3)
C1 0.3982 (3) 0.58033 (12) 0.59760 (7) 0.0368 (3)
C2 0.5267 (3) 0.55371 (13) 0.51822 (7) 0.0375 (3)
H2 0.6522 0.6174 0.4933 0.045*
C3 −0.0215 (3) 0.46506 (12) 0.81483 (7) 0.0357 (3)
H3 0.0526 0.3836 0.8012 0.043*
C4 −0.1676 (3) 0.48541 (12) 0.88672 (7) 0.0366 (3)
C5 −0.2754 (3) 0.60885 (13) 0.90499 (7) 0.0410 (3)
H5 −0.3763 0.6256 0.9524 0.049*
C6 −0.2323 (4) 0.70583 (13) 0.85271 (8) 0.0431 (3)
H6 −0.3019 0.7885 0.8647 0.052*
C7 −0.0849 (4) 0.67954 (13) 0.78221 (8) 0.0418 (3)
H7 −0.0543 0.7447 0.7466 0.050*
H1 0.103 (4) 0.5407 (17) 0.7195 (6) 0.063*
H3A −0.127 (5) 0.3217 (12) 0.9213 (10) 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0428 (6) 0.0421 (6) 0.0271 (5) −0.0016 (5) 0.0072 (4) 0.0009 (4)
O1 0.0743 (7) 0.0392 (6) 0.0333 (5) −0.0081 (4) 0.0207 (5) −0.0027 (4)
O2 0.0928 (9) 0.0383 (6) 0.0397 (6) −0.0108 (5) 0.0225 (5) −0.0095 (4)
O3 0.0852 (8) 0.0450 (6) 0.0378 (6) 0.0079 (5) 0.0253 (5) 0.0091 (4)
C1 0.0467 (7) 0.0355 (7) 0.0283 (6) −0.0003 (5) 0.0071 (5) −0.0027 (5)
C2 0.0468 (7) 0.0369 (7) 0.0290 (6) −0.0030 (5) 0.0103 (5) 0.0003 (5)
C3 0.0420 (7) 0.0342 (6) 0.0310 (6) 0.0005 (5) 0.0076 (5) −0.0018 (5)
C4 0.0407 (7) 0.0406 (7) 0.0285 (6) −0.0012 (5) 0.0072 (5) 0.0016 (5)
C5 0.0441 (7) 0.0472 (8) 0.0318 (6) 0.0042 (6) 0.0087 (5) −0.0056 (6)
C6 0.0481 (7) 0.0363 (7) 0.0450 (7) 0.0055 (5) 0.0039 (6) −0.0043 (5)
C7 0.0482 (8) 0.0386 (7) 0.0387 (7) −0.0001 (5) 0.0044 (5) 0.0067 (5)

Geometric parameters (Å, °)

N1—C7 1.3327 (17) C2—H2 0.9300
N1—C3 1.3327 (16) C3—C4 1.3898 (17)
N1—H1 0.893 (12) C3—H3 0.9300
O1—C1 1.2603 (15) C4—C5 1.3945 (18)
O2—C1 1.2452 (15) C5—C6 1.3752 (19)
O3—C4 1.3369 (15) C5—H5 0.9300
O3—H3A 0.839 (14) C6—C7 1.3813 (19)
C1—C2 1.4962 (16) C6—H6 0.9300
C2—C2i 1.308 (3) C7—H7 0.9300
C7—N1—C3 121.94 (11) O3—C4—C3 122.09 (12)
C7—N1—H1 121.9 (12) O3—C4—C5 120.01 (11)
C3—N1—H1 116.2 (12) C3—C4—C5 117.90 (11)
C4—O3—H3A 111.9 (13) C6—C5—C4 119.86 (11)
O2—C1—O1 123.54 (11) C6—C5—H5 120.1
O2—C1—C2 118.36 (11) C4—C5—H5 120.1
O1—C1—C2 118.10 (11) C5—C6—C7 119.49 (12)
C2i—C2—C1 123.96 (15) C5—C6—H6 120.3
C2i—C2—H2 118.0 C7—C6—H6 120.3
C1—C2—H2 118.0 N1—C7—C6 120.03 (12)
N1—C3—C4 120.77 (12) N1—C7—H7 120.0
N1—C3—H3 119.6 C6—C7—H7 120.0
C4—C3—H3 119.6

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.89 (1) 1.69 (1) 2.5774 (14) 175 (2)
O3—H3A···O2ii 0.84 (1) 1.75 (2) 2.5831 (15) 172 (2)

Symmetry codes: (ii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2594).

References

  1. Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc.124, 14425–14432. [DOI] [PubMed]
  2. Aakeroy, C. B. & Nieuwenhuyzen, M. (1994). J. Am. Chem. Soc.116, 10983–10991.
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  4. Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117. [DOI] [PubMed]
  5. Bu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, o3466.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Fidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr.90, 1081–1085. [DOI] [PubMed]
  9. Fukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, o718–o722. [DOI] [PubMed]
  10. Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840.
  11. Lezina, V. P., Shirokova, L. V., Borunov, M. M., Stepanyants, A. U. & Smirnov, L. D. (1981). Russ. Chem. Bull.30, 540–544.
  12. Liu, Y. & Xu, D.-J. (2004). Acta Cryst. E60, m1002–m1004.
  13. Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.
  14. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  15. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, TX, USA.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Thomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem.15, 333–342.
  18. Xu, K., Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, o1467. [DOI] [PMC free article] [PubMed]
  19. Zhang, X.-F., Gao, S., Huo, L.-H., Lu, Z.-Z. & Zhao, H. (2004). Acta Cryst. E60, m1367–m1369.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023800/ng2594sup1.cif

e-65-o1679-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023800/ng2594Isup2.hkl

e-65-o1679-Isup2.hkl (65.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES