Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1520. doi: 10.1107/S1600536809019631

2-tert-Butyl-6-[(4-chloro-2-nitro­phen­yl)diazen­yl]-4-methylphenol

Hui-Liang Wen a,*, Xiao-Qin Wu a, Bo-Wen Lai b
PMCID: PMC2969205  PMID: 21582811

Abstract

In the title compound, C17H18ClN3O3, the dihedral angle between the planes of the two benzene rings is 1.03 (7)°. The overall conformation of the mol­ecule is influenced, in part, by electron delocalization and by an intra­molecular bifurcated O—H⋯(O,N) hydrogen bonds. The O atoms of the nitro group, one of which serves as an H bond acceptor, are disordered over two sets of sites with refined occupancies of 0.56 (3) and 0.44 (3).

Related literature

For benzotriazoles as UV absorbers and their applications in industry, see: Ravichandran et al. (2002). N-oxides are a key type inter­mediates in the synthesis of benzotriazoles, see: Wen et al. (2006); Crawford (1999). For the use of green synthetic methods to obtain inter­mediates, see: Tanaka & Toda (2000).graphic file with name e-65-o1520-scheme1.jpg

Experimental

Crystal data

  • C17H18ClN3O3

  • M r = 347.79

  • Monoclinic, Inline graphic

  • a = 14.578 (4) Å

  • b = 7.0616 (19) Å

  • c = 17.043 (5) Å

  • β = 101.233 (3)°

  • V = 1720.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.31 × 0.18 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.930, T max = 0.963

  • 14642 measured reflections

  • 3927 independent reflections

  • 2563 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.141

  • S = 1.03

  • 3927 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019631/lh2824sup1.cif

e-65-o1520-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019631/lh2824Isup2.hkl

e-65-o1520-Isup2.hkl (192.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1′ 0.82 2.28 2.933 (7) 136
O3—H3⋯O1 0.82 2.50 3.142 (12) 136
O3—H3⋯N2 0.82 1.84 2.553 (2) 145

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20662007) and the Key Laboratory Open Foundation of Food Science of the Ministry of Education, Nanchang University (NCU200407).

supplementary crystallographic information

Comment

Benzotriazoles play an important role as a class of UV absorbers and have promising industrial applications (Ravichandran et al., 2002). N-oxides are a key type intermediates in the synthesis of benzotriazoles (Wen et al., 2006; Crawford, 1999) and the title compound is an important intermediate in the synthesis of 2-(2'-Hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chloro benzotriazole (UV 326), a good ultraviolet absorber. Due to the growing awareness of environmental protection, the demand for clean and 'green' (i.e solvent free) chemical syntheses has been growing, so using these synthetic methods to form intermediates have received attention (Tanaka & Toda, 2000). Herein we report a 'green' synthetic method and the crystal structure of the title compound. In the title moleclue (Fig .1) the dihedral angle between the two benzene rings is 1.03 (7)°. The overall conformation of the molecule is influenced, in part, by electron delocalization and by intramolecular O—H···O and O—H···N hydrogen bonds.

Experimental

The title compound was synthesized via the solid phase reaction of 4-chloro-2-nitroaniline and 2-tert-butyl-4-substituted phenol at room temperature. After intensive grinding a mixture of 4-chloro-2-nitrobenzenamine 1.72 g (10 mmol), 2-tert-butyl-4-methylphenol 1.72 g (10.5 mmol), NaNO2 0.69 g (10 mmol), and KHSO4 1.36 g (10 mmol) in a mortar for 15 min at 293 K, the product was washed with hot water. A few purple crystals suitable for X-ray diffraction analysis were obtained upon recrystallization in ethanol after several days (m. p. 445–446 K), which gave the product in 93% yield and higher than 99% purity (by HPLC).

Refinement

All H atoms were included in calculated positions with O—H = 0.82Å; CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, and Uiso(H) = 1.5Ueq(Cmethyl,O) and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The O atoms of the nitro group are disordered over two sites with refined occupancies of 0.56 (3) and 0.44 (3).

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The minor comonent of disorder is shown with open bonds and hydrogen bonds are shown with dashed lines.

Crystal data

C17H18ClN3O3 F(000) = 728
Mr = 347.79 Dx = 1.342 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4044 reflections
a = 14.578 (4) Å θ = 2.6–27.2°
b = 7.0616 (19) Å µ = 0.24 mm1
c = 17.043 (5) Å T = 296 K
β = 101.233 (3)° Block, purple
V = 1720.9 (8) Å3 0.31 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3927 independent reflections
Radiation source: fine-focus sealed tube 2563 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→18
Tmin = 0.930, Tmax = 0.963 k = −9→8
14642 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.5672P] where P = (Fo2 + 2Fc2)/3
3927 reflections (Δ/σ)max = 0.002
241 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 1.37753 (4) 0.52156 (11) 0.44085 (5) 0.0871 (3)
O1 0.9625 (4) 0.559 (3) 0.2905 (6) 0.109 (4) 0.56 (3)
O2 1.0758 (7) 0.659 (2) 0.2334 (6) 0.115 (4) 0.56 (3)
O3 0.81516 (9) 0.7932 (3) 0.36241 (8) 0.0666 (5)
H3 0.8703 0.7643 0.3663 0.100*
O1' 0.9670 (8) 0.689 (4) 0.2804 (4) 0.100 (5) 0.44 (3)
O2' 1.0687 (12) 0.545 (5) 0.2372 (10) 0.156 (8) 0.44 (3)
N1 1.04252 (15) 0.6167 (4) 0.29115 (12) 0.0765 (6)
N2 0.98233 (10) 0.7293 (2) 0.43581 (9) 0.0475 (4)
N3 0.96277 (10) 0.7767 (2) 0.50347 (9) 0.0468 (4)
C1 1.10633 (13) 0.6202 (3) 0.36932 (12) 0.0528 (5)
C2 1.19824 (14) 0.5718 (3) 0.36947 (14) 0.0597 (5)
H2 1.2171 0.5395 0.3221 0.072*
C3 1.26084 (14) 0.5723 (3) 0.44035 (15) 0.0599 (6)
C4 1.23301 (14) 0.6162 (3) 0.51114 (14) 0.0606 (5)
H4 1.2760 0.6122 0.5592 0.073*
C5 1.14154 (13) 0.6660 (3) 0.51035 (12) 0.0537 (5)
H5 1.1233 0.6963 0.5582 0.064*
C6 1.07582 (12) 0.6716 (3) 0.43917 (11) 0.0468 (4)
C7 0.87202 (12) 0.8321 (3) 0.50305 (10) 0.0425 (4)
C8 0.85301 (13) 0.8758 (3) 0.57888 (11) 0.0465 (4)
H8 0.9010 0.8707 0.6236 0.056*
C9 0.76528 (13) 0.9255 (3) 0.58763 (10) 0.0473 (4)
C10 0.69528 (13) 0.9379 (3) 0.51815 (11) 0.0485 (5)
H10 0.6358 0.9748 0.5242 0.058*
C11 0.70815 (12) 0.8993 (3) 0.44168 (10) 0.0485 (5)
C12 0.79931 (12) 0.8412 (3) 0.43353 (10) 0.0465 (4)
C13 0.74126 (16) 0.9610 (4) 0.66868 (11) 0.0646 (6)
H13A 0.7066 0.8553 0.6831 0.097*
H13B 0.7042 1.0738 0.6666 0.097*
H13C 0.7978 0.9763 0.7078 0.097*
C14 0.62867 (14) 0.9137 (4) 0.36802 (12) 0.0658 (6)
C15 0.53856 (16) 0.9904 (5) 0.39088 (14) 0.0868 (9)
H15A 0.5192 0.9069 0.4290 0.130*
H15B 0.4901 0.9979 0.3439 0.130*
H15C 0.5502 1.1142 0.4139 0.130*
C16 0.65620 (18) 1.0504 (5) 0.30642 (14) 0.0959 (10)
H16A 0.6645 1.1753 0.3290 0.144*
H16B 0.6077 1.0528 0.2594 0.144*
H16C 0.7136 1.0087 0.2924 0.144*
C17 0.60711 (17) 0.7157 (5) 0.33203 (15) 0.0931 (10)
H17A 0.6629 0.6623 0.3190 0.140*
H17B 0.5598 0.7250 0.2844 0.140*
H17C 0.5852 0.6360 0.3701 0.140*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0412 (3) 0.1022 (5) 0.1217 (6) 0.0083 (3) 0.0251 (3) 0.0142 (4)
O1 0.052 (2) 0.186 (11) 0.084 (3) −0.001 (4) −0.001 (2) −0.047 (5)
O2 0.105 (4) 0.185 (9) 0.056 (3) −0.001 (5) 0.016 (3) 0.012 (4)
O3 0.0420 (7) 0.1165 (13) 0.0417 (7) 0.0091 (8) 0.0094 (6) −0.0118 (8)
O1' 0.070 (4) 0.173 (13) 0.055 (3) 0.043 (5) 0.007 (2) −0.013 (4)
O2' 0.115 (7) 0.255 (18) 0.091 (7) 0.062 (10) 0.007 (5) −0.080 (9)
N1 0.0612 (13) 0.1073 (17) 0.0606 (12) 0.0158 (13) 0.0106 (10) −0.0208 (12)
N2 0.0388 (8) 0.0553 (10) 0.0491 (9) −0.0003 (7) 0.0102 (7) −0.0025 (7)
N3 0.0412 (8) 0.0512 (9) 0.0478 (9) −0.0017 (7) 0.0083 (7) −0.0007 (7)
C1 0.0465 (11) 0.0550 (12) 0.0571 (12) 0.0003 (9) 0.0106 (9) −0.0026 (9)
C2 0.0503 (12) 0.0634 (14) 0.0702 (14) 0.0041 (10) 0.0232 (11) 0.0006 (11)
C3 0.0385 (10) 0.0570 (13) 0.0869 (16) 0.0007 (9) 0.0186 (11) 0.0079 (11)
C4 0.0429 (11) 0.0655 (13) 0.0699 (14) −0.0021 (9) 0.0021 (10) 0.0061 (11)
C5 0.0455 (11) 0.0588 (12) 0.0561 (12) −0.0017 (9) 0.0084 (9) 0.0023 (9)
C6 0.0394 (9) 0.0460 (10) 0.0554 (11) −0.0029 (8) 0.0104 (8) −0.0006 (8)
C7 0.0374 (9) 0.0472 (10) 0.0425 (9) −0.0019 (7) 0.0072 (7) −0.0006 (8)
C8 0.0469 (10) 0.0531 (11) 0.0378 (9) −0.0022 (8) 0.0038 (8) 0.0008 (8)
C9 0.0515 (11) 0.0542 (11) 0.0380 (9) −0.0012 (9) 0.0131 (8) 0.0004 (8)
C10 0.0418 (10) 0.0617 (12) 0.0441 (10) 0.0039 (8) 0.0139 (8) 0.0015 (9)
C11 0.0402 (10) 0.0668 (13) 0.0384 (9) −0.0008 (9) 0.0074 (7) 0.0002 (9)
C12 0.0418 (10) 0.0606 (12) 0.0381 (9) 0.0003 (8) 0.0102 (8) −0.0032 (8)
C13 0.0651 (13) 0.0909 (17) 0.0408 (10) 0.0048 (12) 0.0178 (10) −0.0003 (11)
C14 0.0399 (11) 0.115 (2) 0.0415 (10) 0.0116 (11) 0.0065 (8) −0.0021 (11)
C15 0.0470 (12) 0.156 (3) 0.0552 (13) 0.0292 (15) 0.0053 (10) 0.0027 (15)
C16 0.0679 (16) 0.170 (3) 0.0488 (13) 0.0225 (18) 0.0092 (11) 0.0315 (16)
C17 0.0536 (14) 0.154 (3) 0.0663 (15) −0.0061 (16) −0.0019 (11) −0.0380 (17)

Geometric parameters (Å, °)

Cl1—C3 1.737 (2) C8—H8 0.9300
O1—N1 1.233 (8) C9—C10 1.407 (3)
O2—N1 1.217 (8) C9—C13 1.511 (2)
O3—C12 1.322 (2) C10—C11 1.379 (2)
O3—H3 0.8200 C10—H10 0.9300
O1'—N1 1.195 (7) C11—C12 1.423 (2)
O2'—N1 1.179 (10) C11—C14 1.537 (3)
N1—C1 1.469 (3) C13—H13A 0.9600
N2—N3 1.285 (2) C13—H13B 0.9600
N2—C6 1.413 (2) C13—H13C 0.9600
N3—C7 1.378 (2) C14—C17 1.534 (4)
C1—C2 1.382 (3) C14—C16 1.536 (4)
C1—C6 1.397 (3) C14—C15 1.540 (3)
C2—C3 1.365 (3) C15—H15A 0.9600
C2—H2 0.9300 C15—H15B 0.9600
C3—C4 1.381 (3) C15—H15C 0.9600
C4—C5 1.376 (3) C16—H16A 0.9600
C4—H4 0.9300 C16—H16B 0.9600
C5—C6 1.392 (3) C16—H16C 0.9600
C5—H5 0.9300 C17—H17A 0.9600
C7—C8 1.408 (2) C17—H17B 0.9600
C7—C12 1.429 (3) C17—H17C 0.9600
C8—C9 1.362 (3)
C12—O3—H3 109.5 C9—C10—H10 117.5
O2'—N1—O1' 119.6 (10) C10—C11—C12 116.78 (16)
O2—N1—O1 126.8 (8) C10—C11—C14 122.62 (17)
O2'—N1—C1 118.1 (7) C12—C11—C14 120.59 (16)
O1'—N1—C1 122.2 (5) O3—C12—C11 119.79 (16)
O2—N1—C1 116.6 (5) O3—C12—C7 120.99 (16)
O1—N1—C1 116.4 (6) C11—C12—C7 119.20 (15)
N3—N2—C6 114.81 (15) C9—C13—H13A 109.5
N2—N3—C7 116.74 (15) C9—C13—H13B 109.5
C2—C1—C6 122.12 (19) H13A—C13—H13B 109.5
C2—C1—N1 116.10 (18) C9—C13—H13C 109.5
C6—C1—N1 121.77 (17) H13A—C13—H13C 109.5
C3—C2—C1 118.8 (2) H13B—C13—H13C 109.5
C3—C2—H2 120.6 C17—C14—C16 111.1 (2)
C1—C2—H2 120.6 C17—C14—C11 109.2 (2)
C2—C3—C4 120.94 (19) C16—C14—C11 110.12 (19)
C2—C3—Cl1 119.29 (17) C17—C14—C15 107.7 (2)
C4—C3—Cl1 119.75 (18) C16—C14—C15 107.5 (2)
C5—C4—C3 119.8 (2) C11—C14—C15 111.17 (17)
C5—C4—H4 120.1 C14—C15—H15A 109.5
C3—C4—H4 120.1 C14—C15—H15B 109.5
C4—C5—C6 121.11 (19) H15A—C15—H15B 109.5
C4—C5—H5 119.4 C14—C15—H15C 109.5
C6—C5—H5 119.4 H15A—C15—H15C 109.5
C5—C6—C1 117.11 (17) H15B—C15—H15C 109.5
C5—C6—N2 122.56 (17) C14—C16—H16A 109.5
C1—C6—N2 120.32 (17) C14—C16—H16B 109.5
N3—C7—C8 114.70 (16) H16A—C16—H16B 109.5
N3—C7—C12 124.97 (16) C14—C16—H16C 109.5
C8—C7—C12 120.30 (16) H16A—C16—H16C 109.5
C9—C8—C7 120.93 (17) H16B—C16—H16C 109.5
C9—C8—H8 119.5 C14—C17—H17A 109.5
C7—C8—H8 119.5 C14—C17—H17B 109.5
C8—C9—C10 117.79 (16) H17A—C17—H17B 109.5
C8—C9—C13 122.19 (17) C14—C17—H17C 109.5
C10—C9—C13 120.00 (17) H17A—C17—H17C 109.5
C11—C10—C9 124.95 (17) H17B—C17—H17C 109.5
C11—C10—H10 117.5
C6—N2—N3—C7 −179.36 (15) N2—N3—C7—C8 177.70 (16)
O2'—N1—C1—C2 12 (2) N2—N3—C7—C12 −0.3 (3)
O1'—N1—C1—C2 −165.3 (16) N3—C7—C8—C9 −177.44 (18)
O2—N1—C1—C2 −32.9 (10) C12—C7—C8—C9 0.7 (3)
O1—N1—C1—C2 142.5 (11) C7—C8—C9—C10 −2.1 (3)
O2'—N1—C1—C6 −168 (2) C7—C8—C9—C13 176.00 (19)
O1'—N1—C1—C6 14.0 (16) C8—C9—C10—C11 1.5 (3)
O2—N1—C1—C6 146.4 (10) C13—C9—C10—C11 −176.6 (2)
O1—N1—C1—C6 −38.2 (11) C9—C10—C11—C12 0.6 (3)
C6—C1—C2—C3 0.7 (3) C9—C10—C11—C14 179.5 (2)
N1—C1—C2—C3 −179.9 (2) C10—C11—C12—O3 176.69 (19)
C1—C2—C3—C4 1.4 (3) C14—C11—C12—O3 −2.2 (3)
C1—C2—C3—Cl1 −177.30 (16) C10—C11—C12—C7 −2.0 (3)
C2—C3—C4—C5 −2.0 (3) C14—C11—C12—C7 179.05 (19)
Cl1—C3—C4—C5 176.67 (17) N3—C7—C12—O3 0.7 (3)
C3—C4—C5—C6 0.5 (3) C8—C7—C12—O3 −177.22 (18)
C4—C5—C6—C1 1.5 (3) N3—C7—C12—C11 179.40 (18)
C4—C5—C6—N2 −177.41 (19) C8—C7—C12—C11 1.5 (3)
C2—C1—C6—C5 −2.1 (3) C10—C11—C14—C17 −114.1 (2)
N1—C1—C6—C5 178.6 (2) C12—C11—C14—C17 64.7 (3)
C2—C1—C6—N2 176.80 (19) C10—C11—C14—C16 123.6 (2)
N1—C1—C6—N2 −2.5 (3) C12—C11—C14—C16 −57.5 (3)
N3—N2—C6—C5 0.2 (3) C10—C11—C14—C15 4.6 (3)
N3—N2—C6—C1 −178.68 (17) C12—C11—C14—C15 −176.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O1' 0.82 2.28 2.933 (7) 136
O3—H3···O1 0.82 2.50 3.142 (12) 136
O3—H3···N2 0.82 1.84 2.553 (2) 145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2824).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Crawford, J. C. (1999). Prog. Polym. Sci 24, 7–43.
  3. Ravichandran, R., Suhadolnik, J., Wood, M. G., Debeillis, A., Detlefsen, R. E., Iyengar, R. & Wolf, J. P. (2002). US Patent No. 6 458 872.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  6. Tanaka, K. & Toda, F. (2000). Chem. Rev.100, 1025–1074. [DOI] [PubMed]
  7. Wen, H.-L., Chen, Y.-H., Hu, H.-W., Zhou, X.-Y. & Liu, C.-B. (2006). Acta Cryst. E62, o4702–o4703.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019631/lh2824sup1.cif

e-65-o1520-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019631/lh2824Isup2.hkl

e-65-o1520-Isup2.hkl (192.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES