Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 10;65(Pt 7):o1543–o1544. doi: 10.1107/S1600536809021436

8β-Acet­oxy-14α-benzo­yloxy-N-ethyl-3α,10β,13β,15α-tetra­hydr­oxy-1α,6α,16β-trimeth­oxy-4β-(methoxy­methyl­ene)aconitane: aconifine from Aconitum karakolicum Rapaics

Bakhodir Tashkhodjaev a,*, Mukhlis N Sultankhodjaev a
PMCID: PMC2969206  PMID: 21582830

Abstract

The title compound, C34H47NO12, is the norditerpenoid alkaloid aconifine isolated from the leaves and tubers of Aconitum karakolicum Rapaics. It has a lycoctonine carbon skeleton and contains four six-membered rings and two five-membered rings; its geometry is similar to that observed in other lycoctonine-type diterpenoid alkaloids. There are two intra­molecular O—H⋯O hydrogen bonds which close five- and seven-membered pseudo-rings, respectively. In the crystal, two inter­molecular O—H⋯O hydrogen bonds cross-link the mol­ecules into double chains along the a axis.

Related literature

For the isolation of aconifine, see: Sultankhodzhaev et al. (1973). For spectroscopic data and the chemical structure of aconifine, see: Sultankhodzhaev et al. (1980). For the neurocardiotoxic activity of aconifine, see: Dzhakhangirov et al. (1997). For the neurocardiotoxic activity of lycoctonine alkaloids, see: Dzhakhangirov et al. (1976). For general background to lycoctonine alkaloids and their structures, see: Joshi & Pelletier (1987).graphic file with name e-65-o1543-scheme1.jpg

Experimental

Crystal data

  • C34H47NO12

  • M r = 661.73

  • Orthorhombic, Inline graphic

  • a = 12.0213 (3) Å

  • b = 15.4938 (6) Å

  • c = 17.1038 (4) Å

  • V = 3185.68 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009) T min = 0.767, T max = 0.811

  • 11111 measured reflections

  • 6334 independent reflections

  • 6050 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.098

  • S = 1.06

  • 6334 reflections

  • 451 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), 2633 Friedel pairs

  • Flack parameter: 0.04 (10)

Data collection: CrysAlisPro (Oxford Diffraction, 2009); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021436/zl2215sup1.cif

e-65-o1543-sup1.cif (27.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021436/zl2215Isup2.hkl

e-65-o1543-Isup2.hkl (310KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O5 0.83 (3) 2.07 (3) 2.791 (2) 146 (3)
O8—H8⋯O12 0.83 (3) 2.11 (3) 2.598 (2) 117 (3)
O2—H2⋯O7i 0.87 (3) 2.21 (3) 3.066 (2) 168 (3)
O8—H8⋯O2ii 0.83 (3) 2.39 (3) 2.928 (2) 123 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Academy of Sciences of Uzbekistan for supporting this study.

supplementary crystallographic information

Comment

The norditerpenoid alkaloid aconifine was isolated from leaves and tubers of Aconitum karakolicum Rapaics (Sultankhodzhaev et al.,1980). It exhibits neurocardiotoxic properties (Dzhakhangirov et al., 1997) similar to those of aconitine (Dzhakhangirov et al., 1976). The molecular structure of the title compound is shown in Fig. 1. Aconifine has a lycoctonine carbon skeleton; its geometry is similar to that observed in other lycoctonine type diterpenoid alkaloids (Joshi et al.,1987).

The lycoctonine carbon skeleton, contains four six-membered rings, (A, C, E and F), and two five-membered rings (B and D) (Fig. 2). Rings A and C have more or less regular chair conformations, whereas ring F shows significant distortions and ring E adopts a sofa conformation. The five-membered rings B and D have envelope conformations.

The position and orientation of the 10 oxo substituents on the carbon lycoctonine skeleton are 1α, 3α, 4β, 6α, 8β, 10β, 13β, 14α, 15α, 16β, which confirms the earlier structure assignment based on spectral data (Sultankhodzhaev et al., 1980).

In the crystal structure of the title compound there are four acidic H atoms that can participate in H-bonds. The H8 and H11 hydroxyl hydrogen atoms take part in intramolecular H-bonds which close 5 and 7-membered pseudo-cycles, respectively. Hydroxyl hydrogen atom H7 does not take a part in any H-bonding interactions. Atoms H2 and H8 participate in intermolecular O—H···O bonds which link the molecules into infinite double chains along the a-axis (Table 1; Fig.3). The hydrogen atom H8 forms a bifurcated H-bond to both O2 and O7.

Experimental

The title compound was isolated from the chloroform fraction of the tubers of Aconitum karakolicum Rapaics by a known method (Sultankhodzhaev et al., 1973). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature (m.p. 471–473 K).

Refinement

The hydroxyl hydrogen atoms were located in a difference Fourier map and refined isotropically. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH; 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso=1.2Ueq(C) [Uiso=1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1.

Fig. 1.

The molecular structure of aconifine, showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Ring assignments in Aconifine

Fig. 3.

Fig. 3.

Crystal packing of aconifine, viewed down the c-axis; H-bonds shown as dashed lines. H-atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C34H47NO12 Dx = 1.380 Mg m3
Mr = 661.73 Melting point: 472(2) K
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2ab Cell parameters from 11111 reflections
a = 12.0213 (3) Å θ = 3.7–75.5°
b = 15.4938 (6) Å µ = 0.87 mm1
c = 17.1038 (4) Å T = 100 K
V = 3185.68 (16) Å3 Prizmatic, colourless
Z = 4 0.40 × 0.30 × 0.25 mm
F(000) = 1416

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 6334 independent reflections
Radiation source: Enhance (Cu) X-ray Source 6050 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 10.2576 pixels mm-1 θmax = 75.6°, θmin = 3.9°
ω scans h = −15→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −19→19
Tmin = 0.767, Tmax = 0.811 l = −21→21
11111 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0771P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.36 e Å3
6334 reflections Δρmin = −0.22 e Å3
451 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00043 (12)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2633 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.04 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.66866 (9) −0.16533 (7) −0.10572 (6) 0.0176 (2)
O2 1.04961 (9) −0.13201 (8) −0.02826 (7) 0.0209 (2)
O3 0.98504 (9) −0.08240 (8) 0.16387 (7) 0.0217 (2)
O4 0.82173 (10) 0.09161 (8) 0.13342 (7) 0.0232 (2)
O5 0.55172 (11) 0.23615 (8) 0.08471 (7) 0.0251 (3)
O6 0.53676 (9) 0.10653 (7) 0.14475 (6) 0.0171 (2)
O7 0.58835 (9) −0.18623 (7) 0.09376 (6) 0.0175 (2)
O8 0.29051 (9) −0.12191 (8) −0.00458 (6) 0.0183 (2)
O9 0.33324 (9) 0.00330 (7) 0.12982 (6) 0.0162 (2)
O10 0.38215 (10) −0.02601 (8) 0.25398 (6) 0.0234 (2)
O11 0.50108 (10) 0.13929 (8) −0.04816 (7) 0.0213 (2)
O12 0.26888 (9) 0.04325 (8) −0.02596 (7) 0.0210 (2)
N 0.79454 (11) 0.02206 (9) −0.06929 (8) 0.0169 (3)
C1 0.73828 (12) −0.16204 (9) −0.03752 (8) 0.0145 (3)
H1A 0.7261 −0.2152 −0.0076 0.017*
C2 0.85921 (13) −0.16088 (10) −0.06393 (9) 0.0170 (3)
H2A 0.8792 −0.2176 −0.0834 0.020*
H2B 0.8673 −0.1202 −0.1066 0.020*
C3 0.93799 (12) −0.13616 (10) 0.00116 (9) 0.0163 (3)
H3A 0.9347 −0.1807 0.0418 0.020*
C4 0.90603 (12) −0.04888 (9) 0.03803 (9) 0.0157 (3)
C5 0.79025 (12) −0.06011 (9) 0.07794 (8) 0.0143 (3)
H5A 0.7935 −0.1039 0.1192 0.017*
C6 0.74394 (13) 0.02751 (10) 0.11062 (9) 0.0170 (3)
H6A 0.6966 0.0146 0.1558 0.020*
C7 0.66856 (12) 0.06323 (9) 0.04426 (8) 0.0155 (3)
H7A 0.6874 0.1233 0.0320 0.019*
C8 0.54779 (12) 0.05540 (9) 0.07171 (8) 0.0147 (3)
C9 0.52897 (12) −0.03713 (10) 0.10283 (8) 0.0140 (3)
H9A 0.5578 −0.0423 0.1562 0.017*
C10 0.58311 (13) −0.10691 (9) 0.04910 (8) 0.0143 (3)
C11 0.70101 (12) −0.08482 (10) 0.01411 (8) 0.0137 (3)
C12 0.49078 (12) −0.12252 (10) −0.01330 (8) 0.0147 (3)
H12A 0.5152 −0.1018 −0.0640 0.018*
H12B 0.4746 −0.1837 −0.0175 0.018*
C13 0.38627 (12) −0.07295 (10) 0.01320 (8) 0.0156 (3)
C14 0.40634 (12) −0.06253 (9) 0.10058 (8) 0.0151 (3)
H14A 0.3941 −0.1172 0.1281 0.018*
C15 0.45606 (12) 0.08664 (10) 0.01258 (8) 0.0157 (3)
H15A 0.4053 0.1236 0.0424 0.019*
C16 0.38277 (13) 0.01688 (10) −0.02702 (8) 0.0167 (3)
H16A 0.4066 0.0104 −0.0815 0.020*
C17 0.69192 (12) 0.00319 (9) −0.02677 (9) 0.0149 (3)
H17A 0.6284 0.0035 −0.0627 0.018*
C18 0.99741 (13) −0.02636 (10) 0.09801 (9) 0.0177 (3)
H18A 1.0703 −0.0340 0.0747 0.021*
H18B 0.9902 0.0333 0.1143 0.021*
C19 0.89793 (13) 0.02424 (10) −0.02277 (9) 0.0181 (3)
H19A 0.9025 0.0793 0.0041 0.022*
H19B 0.9610 0.0203 −0.0579 0.022*
C20 0.78363 (14) 0.09877 (11) −0.11883 (10) 0.0221 (3)
H20A 0.7980 0.1499 −0.0878 0.026*
H20B 0.7080 0.1024 −0.1384 0.026*
C21 0.86362 (17) 0.09632 (14) −0.18710 (11) 0.0345 (4)
H21A 0.8541 0.0433 −0.2153 0.052*
H21B 0.9386 0.1000 −0.1681 0.052*
H21C 0.8489 0.1442 −0.2213 0.052*
C22 0.65941 (14) −0.24944 (10) −0.13754 (9) 0.0204 (3)
H22A 0.7274 −0.2644 −0.1636 0.031*
H22B 0.5991 −0.2510 −0.1743 0.031*
H22C 0.6454 −0.2900 −0.0963 0.031*
C23 1.06760 (15) −0.06738 (12) 0.22176 (10) 0.0264 (4)
H23A 1.0660 −0.0078 0.2371 0.040*
H23B 1.1396 −0.0811 0.2009 0.040*
H23C 1.0530 −0.1031 0.2665 0.040*
C24 0.84230 (16) 0.09095 (14) 0.21572 (11) 0.0320 (4)
H24A 0.7750 0.1051 0.2431 0.048*
H24B 0.8987 0.1327 0.2280 0.048*
H24C 0.8670 0.0346 0.2313 0.048*
C25 0.54687 (13) 0.19314 (10) 0.14337 (10) 0.0206 (3)
C26 0.55057 (18) 0.22808 (12) 0.22522 (11) 0.0316 (4)
H26A 0.6043 0.1964 0.2552 0.047*
H26B 0.4786 0.2223 0.2489 0.047*
H26C 0.5711 0.2879 0.2239 0.047*
C27 0.33426 (13) 0.01855 (10) 0.20752 (9) 0.0170 (3)
C28 0.26739 (12) 0.09676 (10) 0.22593 (9) 0.0170 (3)
C29 0.26246 (13) 0.12388 (11) 0.30387 (9) 0.0198 (3)
H29 0.3007 0.0937 0.3424 0.024*
C30 0.19980 (14) 0.19638 (11) 0.32318 (9) 0.0223 (3)
H30 0.1962 0.2147 0.3749 0.027*
C31 0.14270 (14) 0.24149 (10) 0.26579 (10) 0.0227 (3)
H31 0.1015 0.2902 0.2790 0.027*
C32 0.14703 (14) 0.21384 (11) 0.18828 (10) 0.0221 (3)
H32 0.1080 0.2437 0.1500 0.027*
C33 0.20932 (13) 0.14203 (11) 0.16821 (9) 0.0195 (3)
H33 0.2125 0.1239 0.1164 0.023*
C34 0.24229 (16) 0.10857 (13) −0.08130 (11) 0.0303 (4)
H34A 0.2836 0.1600 −0.0694 0.045*
H34B 0.1641 0.1208 −0.0790 0.045*
H34C 0.2613 0.0890 −0.1329 0.045*
H2 1.061 (2) −0.1796 (17) −0.0539 (15) 0.032 (6)*
H7 0.640 (2) −0.1782 (18) 0.1299 (17) 0.040 (7)*
H8 0.237 (2) −0.0881 (15) −0.0020 (13) 0.023 (5)*
H11 0.519 (2) 0.1832 (19) −0.0238 (17) 0.041 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0172 (5) 0.0198 (5) 0.0158 (5) 0.0027 (4) −0.0020 (4) −0.0033 (4)
O2 0.0136 (5) 0.0231 (6) 0.0259 (5) 0.0012 (4) 0.0028 (4) −0.0038 (5)
O3 0.0188 (5) 0.0242 (6) 0.0221 (5) −0.0053 (5) −0.0068 (4) 0.0021 (5)
O4 0.0197 (6) 0.0220 (5) 0.0280 (6) −0.0039 (5) −0.0034 (4) −0.0074 (5)
O5 0.0278 (6) 0.0180 (5) 0.0294 (6) −0.0022 (5) 0.0028 (5) −0.0010 (5)
O6 0.0167 (5) 0.0162 (5) 0.0183 (5) −0.0002 (4) 0.0021 (4) −0.0033 (4)
O7 0.0168 (5) 0.0162 (5) 0.0196 (5) −0.0005 (4) −0.0001 (4) 0.0022 (4)
O8 0.0109 (5) 0.0204 (5) 0.0237 (5) −0.0001 (5) −0.0016 (4) −0.0030 (4)
O9 0.0136 (5) 0.0195 (5) 0.0155 (5) 0.0026 (4) 0.0018 (4) −0.0008 (4)
O10 0.0243 (6) 0.0280 (6) 0.0180 (5) 0.0066 (5) 0.0015 (4) 0.0020 (5)
O11 0.0229 (6) 0.0199 (5) 0.0210 (5) 0.0006 (5) 0.0027 (4) 0.0060 (5)
O12 0.0165 (5) 0.0228 (6) 0.0238 (5) 0.0051 (4) −0.0029 (4) 0.0014 (5)
N 0.0148 (6) 0.0172 (6) 0.0188 (6) 0.0009 (5) 0.0032 (5) 0.0030 (5)
C1 0.0131 (7) 0.0155 (6) 0.0148 (6) 0.0004 (5) −0.0011 (5) −0.0012 (5)
C2 0.0146 (7) 0.0193 (7) 0.0171 (6) 0.0023 (6) 0.0007 (5) −0.0032 (5)
C3 0.0115 (6) 0.0177 (7) 0.0197 (7) 0.0005 (5) 0.0006 (5) −0.0006 (6)
C4 0.0112 (6) 0.0161 (7) 0.0199 (6) −0.0009 (6) 0.0005 (5) −0.0006 (5)
C5 0.0116 (6) 0.0149 (6) 0.0163 (6) −0.0017 (5) 0.0005 (5) −0.0002 (5)
C6 0.0134 (7) 0.0175 (7) 0.0201 (7) −0.0005 (6) 0.0007 (5) −0.0019 (5)
C7 0.0139 (7) 0.0149 (6) 0.0178 (6) −0.0017 (5) 0.0012 (5) −0.0004 (5)
C8 0.0144 (6) 0.0135 (6) 0.0163 (6) −0.0002 (5) −0.0002 (5) −0.0019 (5)
C9 0.0128 (7) 0.0152 (6) 0.0140 (6) −0.0012 (5) 0.0011 (5) 0.0001 (5)
C10 0.0136 (7) 0.0138 (6) 0.0153 (6) −0.0004 (5) 0.0010 (5) 0.0006 (5)
C11 0.0106 (6) 0.0154 (6) 0.0152 (6) 0.0004 (5) 0.0006 (5) −0.0001 (5)
C12 0.0113 (6) 0.0162 (7) 0.0167 (6) 0.0001 (5) −0.0005 (5) −0.0023 (5)
C13 0.0129 (6) 0.0170 (7) 0.0170 (6) −0.0009 (6) −0.0001 (5) −0.0011 (5)
C14 0.0137 (7) 0.0149 (6) 0.0166 (6) 0.0005 (5) 0.0012 (5) 0.0015 (5)
C15 0.0153 (6) 0.0146 (6) 0.0173 (6) 0.0018 (6) 0.0015 (5) 0.0032 (5)
C16 0.0165 (7) 0.0184 (7) 0.0151 (6) 0.0032 (6) −0.0005 (5) −0.0008 (5)
C17 0.0124 (6) 0.0150 (6) 0.0173 (6) 0.0004 (5) 0.0010 (5) −0.0006 (5)
C18 0.0138 (6) 0.0175 (7) 0.0217 (7) −0.0024 (6) −0.0002 (5) −0.0017 (6)
C19 0.0146 (7) 0.0172 (7) 0.0225 (7) −0.0010 (6) 0.0034 (6) 0.0022 (6)
C20 0.0224 (8) 0.0220 (8) 0.0217 (7) 0.0003 (6) 0.0033 (6) 0.0056 (6)
C21 0.0328 (10) 0.0407 (11) 0.0299 (9) 0.0001 (8) 0.0118 (8) 0.0116 (8)
C22 0.0215 (7) 0.0204 (7) 0.0194 (7) −0.0025 (6) −0.0008 (6) −0.0023 (6)
C23 0.0236 (8) 0.0293 (9) 0.0263 (8) −0.0067 (7) −0.0086 (6) 0.0000 (7)
C24 0.0226 (8) 0.0441 (11) 0.0294 (9) −0.0014 (8) −0.0025 (6) −0.0159 (8)
C25 0.0158 (7) 0.0168 (7) 0.0291 (8) −0.0004 (6) 0.0020 (6) −0.0034 (6)
C26 0.0426 (11) 0.0229 (8) 0.0293 (9) 0.0017 (8) 0.0006 (8) −0.0095 (7)
C27 0.0155 (7) 0.0184 (7) 0.0171 (7) −0.0026 (6) 0.0027 (5) 0.0007 (5)
C28 0.0131 (7) 0.0190 (7) 0.0190 (6) −0.0017 (6) 0.0030 (5) −0.0006 (6)
C29 0.0194 (7) 0.0213 (7) 0.0188 (7) 0.0001 (6) 0.0010 (5) −0.0006 (6)
C30 0.0205 (8) 0.0246 (8) 0.0216 (7) −0.0034 (7) 0.0036 (6) −0.0048 (6)
C31 0.0217 (7) 0.0179 (7) 0.0287 (8) 0.0011 (6) 0.0053 (6) −0.0042 (6)
C32 0.0207 (8) 0.0212 (8) 0.0245 (8) 0.0014 (6) −0.0016 (6) 0.0024 (6)
C33 0.0192 (7) 0.0215 (7) 0.0178 (6) −0.0017 (6) 0.0024 (5) −0.0001 (6)
C34 0.0267 (9) 0.0285 (9) 0.0358 (9) 0.0051 (7) −0.0108 (7) 0.0074 (8)

Geometric parameters (Å, °)

O1—C22 1.4167 (18) C10—C11 1.5762 (19)
O1—C1 1.4365 (17) C11—C17 1.536 (2)
O2—C3 1.4346 (17) C12—C13 1.5406 (19)
O2—H2 0.87 (3) C12—H12A 0.9700
O3—C23 1.4211 (19) C12—H12B 0.9700
O3—C18 1.4301 (19) C13—C14 1.5225 (19)
O4—C6 1.4187 (19) C13—C16 1.553 (2)
O4—C24 1.429 (2) C14—H14A 0.9800
O5—C25 1.206 (2) C15—C16 1.550 (2)
O6—C25 1.3476 (19) C15—H15A 0.9800
O6—C8 1.4852 (17) C16—H16A 0.9800
O7—C10 1.4484 (17) C17—H17A 0.9800
O7—H7 0.89 (3) C18—H18A 0.9700
O8—C13 1.4118 (18) C18—H18B 0.9700
O8—H8 0.83 (3) C19—H19A 0.9700
O9—C27 1.3500 (17) C19—H19B 0.9700
O9—C14 1.4362 (18) C20—C21 1.513 (2)
O10—C27 1.200 (2) C20—H20A 0.9700
O11—C15 1.4275 (18) C20—H20B 0.9700
O11—H11 0.83 (3) C21—H21A 0.9600
O12—C34 1.422 (2) C21—H21B 0.9600
O12—C16 1.4289 (18) C21—H21C 0.9600
N—C17 1.4615 (18) C22—H22A 0.9600
N—C20 1.466 (2) C22—H22B 0.9600
N—C19 1.476 (2) C22—H22C 0.9600
C1—C2 1.522 (2) C23—H23A 0.9600
C1—C11 1.553 (2) C23—H23B 0.9600
C1—H1A 0.9800 C23—H23C 0.9600
C2—C3 1.511 (2) C24—H24A 0.9600
C2—H2A 0.9700 C24—H24B 0.9600
C2—H2B 0.9700 C24—H24C 0.9600
C3—C4 1.541 (2) C25—C26 1.502 (2)
C3—H3A 0.9800 C26—H26A 0.9600
C4—C19 1.541 (2) C26—H26B 0.9600
C4—C18 1.543 (2) C26—H26C 0.9600
C4—C5 1.5599 (19) C27—C28 1.488 (2)
C5—C6 1.570 (2) C28—C33 1.398 (2)
C5—C11 1.5778 (19) C28—C29 1.399 (2)
C5—H5A 0.9800 C29—C30 1.392 (2)
C6—C7 1.554 (2) C29—H29 0.9300
C6—H6A 0.9800 C30—C31 1.387 (3)
C7—C8 1.531 (2) C30—H30 0.9300
C7—C17 1.5557 (19) C31—C32 1.394 (2)
C7—H7A 0.9800 C31—H31 0.9300
C8—C9 1.546 (2) C32—C33 1.384 (2)
C8—C15 1.573 (2) C32—H32 0.9300
C9—C14 1.526 (2) C33—H33 0.9300
C9—C10 1.561 (2) C34—H34A 0.9600
C9—H9A 0.9800 C34—H34B 0.9600
C10—C12 1.5588 (19) C34—H34C 0.9600
C22—O1—C1 112.97 (11) O11—C15—C16 107.21 (12)
C3—O2—H2 107.0 (17) O11—C15—C8 112.21 (12)
C23—O3—C18 112.14 (12) C16—C15—C8 117.71 (12)
C6—O4—C24 112.32 (14) O11—C15—H15A 106.3
C25—O6—C8 120.55 (12) C16—C15—H15A 106.3
C10—O7—H7 106.2 (18) C8—C15—H15A 106.3
C13—O8—H8 106.3 (16) O12—C16—C15 109.86 (12)
C27—O9—C14 117.48 (12) O12—C16—C13 106.06 (12)
C15—O11—H11 102 (2) C15—C16—C13 114.58 (12)
C34—O12—C16 114.23 (13) O12—C16—H16A 108.7
C17—N—C20 111.98 (12) C15—C16—H16A 108.7
C17—N—C19 116.56 (12) C13—C16—H16A 108.7
C20—N—C19 111.61 (12) N—C17—C11 110.11 (11)
O1—C1—C2 108.40 (11) N—C17—C7 114.92 (12)
O1—C1—C11 108.72 (11) C11—C17—C7 100.84 (11)
C2—C1—C11 115.78 (12) N—C17—H17A 110.2
O1—C1—H1A 107.9 C11—C17—H17A 110.2
C2—C1—H1A 107.9 C7—C17—H17A 110.2
C11—C1—H1A 107.9 O3—C18—C4 108.21 (12)
C3—C2—C1 112.51 (12) O3—C18—H18A 110.1
C3—C2—H2A 109.1 C4—C18—H18A 110.1
C1—C2—H2A 109.1 O3—C18—H18B 110.1
C3—C2—H2B 109.1 C4—C18—H18B 110.1
C1—C2—H2B 109.1 H18A—C18—H18B 108.4
H2A—C2—H2B 107.8 N—C19—C4 113.58 (12)
O2—C3—C2 109.83 (12) N—C19—H19A 108.8
O2—C3—C4 109.72 (12) C4—C19—H19A 108.8
C2—C3—C4 111.57 (12) N—C19—H19B 108.8
O2—C3—H3A 108.6 C4—C19—H19B 108.8
C2—C3—H3A 108.6 H19A—C19—H19B 107.7
C4—C3—H3A 108.6 N—C20—C21 111.65 (15)
C3—C4—C19 112.64 (12) N—C20—H20A 109.3
C3—C4—C18 107.04 (12) C21—C20—H20A 109.3
C19—C4—C18 109.11 (12) N—C20—H20B 109.3
C3—C4—C5 107.68 (11) C21—C20—H20B 109.3
C19—C4—C5 108.72 (12) H20A—C20—H20B 108.0
C18—C4—C5 111.68 (12) C20—C21—H21A 109.5
C4—C5—C6 112.07 (12) C20—C21—H21B 109.5
C4—C5—C11 109.32 (11) H21A—C21—H21B 109.5
C6—C5—C11 102.42 (11) C20—C21—H21C 109.5
C4—C5—H5A 110.9 H21A—C21—H21C 109.5
C6—C5—H5A 110.9 H21B—C21—H21C 109.5
C11—C5—H5A 110.9 O1—C22—H22A 109.5
O4—C6—C7 109.63 (12) O1—C22—H22B 109.5
O4—C6—C5 117.99 (12) H22A—C22—H22B 109.5
C7—C6—C5 104.75 (12) O1—C22—H22C 109.5
O4—C6—H6A 108.0 H22A—C22—H22C 109.5
C7—C6—H6A 108.0 H22B—C22—H22C 109.5
C5—C6—H6A 108.0 O3—C23—H23A 109.5
C8—C7—C6 107.51 (11) O3—C23—H23B 109.5
C8—C7—C17 111.31 (12) H23A—C23—H23B 109.5
C6—C7—C17 104.61 (12) O3—C23—H23C 109.5
C8—C7—H7A 111.1 H23A—C23—H23C 109.5
C6—C7—H7A 111.1 H23B—C23—H23C 109.5
C17—C7—H7A 111.1 O4—C24—H24A 109.5
O6—C8—C7 107.49 (11) O4—C24—H24B 109.5
O6—C8—C9 101.06 (11) H24A—C24—H24B 109.5
C7—C8—C9 108.54 (12) O4—C24—H24C 109.5
O6—C8—C15 108.32 (11) H24A—C24—H24C 109.5
C7—C8—C15 116.32 (12) H24B—C24—H24C 109.5
C9—C8—C15 113.84 (12) O5—C25—O6 124.70 (15)
C14—C9—C8 111.83 (12) O5—C25—C26 125.10 (15)
C14—C9—C10 102.08 (11) O6—C25—C26 110.20 (14)
C8—C9—C10 112.24 (11) C25—C26—H26A 109.5
C14—C9—H9A 110.1 C25—C26—H26B 109.5
C8—C9—H9A 110.1 H26A—C26—H26B 109.5
C10—C9—H9A 110.1 C25—C26—H26C 109.5
O7—C10—C12 105.10 (11) H26A—C26—H26C 109.5
O7—C10—C9 107.18 (11) H26B—C26—H26C 109.5
C12—C10—C9 102.33 (11) O10—C27—O9 123.76 (14)
O7—C10—C11 110.21 (12) O10—C27—C28 126.00 (14)
C12—C10—C11 114.45 (11) O9—C27—C28 110.24 (13)
C9—C10—C11 116.62 (12) C33—C28—C29 120.07 (14)
C17—C11—C1 116.46 (12) C33—C28—C27 121.94 (14)
C17—C11—C10 107.55 (11) C29—C28—C27 117.98 (14)
C1—C11—C10 107.94 (12) C30—C29—C28 119.43 (15)
C17—C11—C5 98.50 (11) C30—C29—H29 120.3
C1—C11—C5 112.60 (12) C28—C29—H29 120.3
C10—C11—C5 113.66 (11) C31—C30—C29 120.43 (15)
C13—C12—C10 107.57 (11) C31—C30—H30 119.8
C13—C12—H12A 110.2 C29—C30—H30 119.8
C10—C12—H12A 110.2 C30—C31—C32 119.99 (15)
C13—C12—H12B 110.2 C30—C31—H31 120.0
C10—C12—H12B 110.2 C32—C31—H31 120.0
H12A—C12—H12B 108.5 C33—C32—C31 120.20 (15)
O8—C13—C14 113.43 (12) C33—C32—H32 119.9
O8—C13—C12 109.50 (12) C31—C32—H32 119.9
C14—C13—C12 102.26 (11) C32—C33—C28 119.88 (14)
O8—C13—C16 111.35 (12) C32—C33—H33 120.1
C14—C13—C16 110.12 (12) C28—C33—H33 120.1
C12—C13—C16 109.79 (12) O12—C34—H34A 109.5
O9—C14—C13 108.67 (11) O12—C34—H34B 109.5
O9—C14—C9 113.52 (12) H34A—C34—H34B 109.5
C13—C14—C9 101.84 (11) O12—C34—H34C 109.5
O9—C14—H14A 110.8 H34A—C34—H34C 109.5
C13—C14—H14A 110.8 H34B—C34—H34C 109.5
C9—C14—H14A 110.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O11—H11···O5 0.83 (3) 2.07 (3) 2.791 (2) 146 (3)
O8—H8···O12 0.83 (3) 2.11 (3) 2.598 (2) 117 (3)
O2—H2···O7i 0.87 (3) 2.21 (3) 3.066 (2) 168 (3)
O8—H8···O2ii 0.83 (3) 2.39 (3) 2.928 (2) 123 (3)

Symmetry codes: (i) x+1/2, −y−1/2, −z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2215).

References

  1. Dzhakhangirov, F. N. (1976). Dokl. Akad. Nauk UzSSR, pp. 32–33.
  2. Dzhakhangirov, F. N., Sultankhodzhaev, M. N., Tashkhodjaev, B. & Salimov, B. T. (1997). Khim. Prir. Soedin. pp. 254–270.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Joshi, B. S. & Pelletier, S. W. (1987). Heterocycles, 26, 2503–2518.
  5. Oxford Diffraction (2009). CrysAlisPro Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sultankhodzhaev, M. N., Beshitaishvili, L. V., Yagudaev, M. R., Yunusov, M. S. & Yunusov, S. Yu. (1980). Khim. Prir. Soedin. pp. 665–672.
  8. Sultankhodzhaev, M. N., Yunusov, M. S. & Yunusov, S. Yu. (1973). Khim. Prir. Soedin. pp. 127–129.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021436/zl2215sup1.cif

e-65-o1543-sup1.cif (27.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021436/zl2215Isup2.hkl

e-65-o1543-Isup2.hkl (310KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES