Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Nov;86(5):1690–1697. doi: 10.1172/JCI114893

Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells.

H Itoh 1, R E Pratt 1, V J Dzau 1
PMCID: PMC296921  PMID: 2173726

Abstract

Vascular remodeling is central to the pathophysiology of hypertension and atherosclerosis. Recent evidence suggests that vasoconstrictive substances, such as angiotensin II (AII), may function as a vascular smooth muscle growth promoting substance. To explore the role of the counterregulatory hormone, atrial natriuretic polypeptide (ANP) in this process, we examined the effect of ANP (alpha-rat ANP [1-28]) on the growth characteristics of cultured rat aortic smooth muscle (RASM) cells. ANP (10(-7) M) significantly suppressed the proliferative effect of 1% and 5% serum as measured by 3H-thymidine incorporation and cell number, confirming ANP as an antimitogenic factor. In quiescent RASM cells, ANP (10(-7), 10(-6) M) significantly suppressed the basal incorporations of 3H-uridine and leucine by 50 and 30%, respectively. ANP (10(-7), 10(-6) M) also suppressed AII-induced RNA and protein syntheses (by 30-40%) with the concomitant reduction of the cell size. Furthermore, ANP also significantly attenuated the increase of 3H-uridine and leucine incorporations caused by transforming growth factor-beta (4 x 10(-11), 4 x 10(-10) M), a potent hypertrophic factor. These results indicate that ANP possesses an antihypertrophic action on vascular smooth muscle cells. Down-regulation of protein kinase C by 24-h treatment with phorbol 12,13-dibutyrate did not inhibit ANP-induced suppression on 3H-uridine incorporation. Based on the observation that ANP was more potent than a ring-deleted analogue of ANP on inhibiting 3H-uridine incorporation, we conclude that the ANP's inhibitory effect is primarily mediated via the activation of a guanylate cyclase-linked ANP receptor(s). Indeed 8-bromo cGMP mimicked the antihypertrophic action of ANP. Accordingly, we speculate that in addition to its vasorelaxant and natriuretic effects, the antihypertrophic action of ANP observed in the present study may serve as an additional compensatory mechanism of ANP in hypertension.

Full text

PDF
1690

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abell T. J., Richards A. M., Ikram H., Espiner E. A., Yandle T. Atrial natriuretic factor inhibits proliferation of vascular smooth muscle cells stimulated by platelet-derived growth factor. Biochem Biophys Res Commun. 1989 May 15;160(3):1392–1396. doi: 10.1016/s0006-291x(89)80158-5. [DOI] [PubMed] [Google Scholar]
  2. Appel R. G. Growth inhibitory activity of atrial natriuretic factor in rat glomerular mesangial cells. FEBS Lett. 1988 Sep 26;238(1):135–138. doi: 10.1016/0014-5793(88)80242-4. [DOI] [PubMed] [Google Scholar]
  3. Berk B. C., Vekshtein V., Gordon H. M., Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989 Apr;13(4):305–314. doi: 10.1161/01.hyp.13.4.305. [DOI] [PubMed] [Google Scholar]
  4. Bevan R. D. An autoradiographic and pathological study of cellular proliferation in rabbit arteries correlated with an increase in arterial pressure. Blood Vessels. 1976;13(1-2):100–128. doi: 10.1159/000158083. [DOI] [PubMed] [Google Scholar]
  5. Campbell-Boswell M., Robertson A. L., Jr Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol. 1981 Oct;35(2):265–276. doi: 10.1016/0014-4800(81)90066-6. [DOI] [PubMed] [Google Scholar]
  6. Cantin M., Genest J. The heart and the atrial natriuretic factor. Endocr Rev. 1985 Spring;6(2):107–127. doi: 10.1210/edrv-6-2-107. [DOI] [PubMed] [Google Scholar]
  7. Chinkers M., Garbers D. L., Chang M. S., Lowe D. G., Chin H. M., Goeddel D. V., Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989 Mar 2;338(6210):78–83. doi: 10.1038/338078a0. [DOI] [PubMed] [Google Scholar]
  8. Dzau V. J., Gibbons G. H. Cell biology of vascular hypertrophy in systemic hypertension. Am J Cardiol. 1988 Oct 5;62(11):30G–35G. doi: 10.1016/0002-9149(88)90029-x. [DOI] [PubMed] [Google Scholar]
  9. Fuller F., Porter J. G., Arfsten A. E., Miller J., Schilling J. W., Scarborough R. M., Lewicki J. A., Schenk D. B. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem. 1988 Jul 5;263(19):9395–9401. [PubMed] [Google Scholar]
  10. Ganguly A., Chiou S., West L. A., Davis J. S. Atrial natriuretic factor inhibits angiotensin-induced aldosterone secretion: not through cGMP or interference with phospholipase C. Biochem Biophys Res Commun. 1989 Feb 28;159(1):148–154. doi: 10.1016/0006-291x(89)92416-9. [DOI] [PubMed] [Google Scholar]
  11. Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989 May;83(5):1774–1777. doi: 10.1172/JCI114081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geisterfer A. A., Peach M. J., Owens G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988 Apr;62(4):749–756. doi: 10.1161/01.res.62.4.749. [DOI] [PubMed] [Google Scholar]
  13. Imada T., Takayanagi R., Inagami T. Changes in the content of atrial natriuretic factor with the progression of hypertension in spontaneously hypertensive rats. Biochem Biophys Res Commun. 1985 Dec 17;133(2):759–765. doi: 10.1016/0006-291x(85)90969-6. [DOI] [PubMed] [Google Scholar]
  14. Itoh H., Nakao K., Katsuura G., Morii N., Shiono S., Sakamoto M., Sugawara A., Yamada T., Saito Y., Matsushita A. Centrally infused atrial natriuretic polypeptide attenuates exaggerated salt appetite in spontaneously hypertensive rats. Circ Res. 1986 Sep;59(3):342–347. doi: 10.1161/01.res.59.3.342. [DOI] [PubMed] [Google Scholar]
  15. Itoh H., Nakao K., Mukoyama M., Yamada T., Hosoda K., Shirakami G., Morii N., Sugawara A., Saito Y., Shiono S. Chronic blockade of endogenous atrial natriuretic polypeptide (ANP) by monoclonal antibody against ANP accelerates the development of hypertension in spontaneously hypertensive and deoxycorticosterone acetate-salt-hypertensive rats. J Clin Invest. 1989 Jul;84(1):145–154. doi: 10.1172/JCI114134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Itoh H., Nakao K., Shiono S., Mukoyama M., Morii N., Sugawara A., Yamada T., Saito Y., Arai H., Kambayashi Y. Conversion of beta-human atrial natriuretic polypeptide into alpha-human atrial natriuretic polypeptide in human plasma in vitro. Biochem Biophys Res Commun. 1987 Mar 13;143(2):560–569. doi: 10.1016/0006-291x(87)91390-8. [DOI] [PubMed] [Google Scholar]
  17. Itoh H., Nakao K., Sugawara A., Saito Y., Mukoyama M., Morii N., Yamada T., Shiono S., Arai H., Hosoda K. Gamma-atrial natriuretic polypeptide (gamma ANP)-derived peptides in human plasma: cosecretion of N-terminal gamma ANP fragment and alpha ANP. J Clin Endocrinol Metab. 1988 Sep;67(3):429–437. doi: 10.1210/jcem-67-3-429. [DOI] [PubMed] [Google Scholar]
  18. Itoh H., Nakao K., Yamada T., Morii N., Shiono S., Sugawara A., Saito Y., Mukoyama M., Arai H., Katsuura G. Modulatory role of vasopressin in secretion of atrial natriuretic polypeptide in conscious rats. Endocrinology. 1987 May;120(5):2186–2188. doi: 10.1210/endo-120-5-2186. [DOI] [PubMed] [Google Scholar]
  19. Johnson A., Lermioglu F., Garg U. C., Morgan-Boyd R., Hassid A. A novel biological effect of atrial natriuretic hormone: inhibition of mesangial cell mitogenesis. Biochem Biophys Res Commun. 1988 Apr 29;152(2):893–897. doi: 10.1016/s0006-291x(88)80123-2. [DOI] [PubMed] [Google Scholar]
  20. Kangawa K., Matsuo H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun. 1984 Jan 13;118(1):131–139. doi: 10.1016/0006-291x(84)91077-5. [DOI] [PubMed] [Google Scholar]
  21. Kariya K., Takai Y. Distinct functions of down-regulation-sensitive and -resistant types of protein kinase C in rabbit aortic smooth muscle cells. FEBS Lett. 1987 Jul 13;219(1):119–124. doi: 10.1016/0014-5793(87)81202-4. [DOI] [PubMed] [Google Scholar]
  22. Levy B. I., Michel J. B., Salzmann J. L., Azizi M., Poitevin P., Safar M., Camilleri J. P. Effects of chronic inhibition of converting enzyme on mechanical and structural properties of arteries in rat renovascular hypertension. Circ Res. 1988 Jul;63(1):227–239. doi: 10.1161/01.res.63.1.227. [DOI] [PubMed] [Google Scholar]
  23. Lincoln T. M. Effects of nitroprusside and 8-bromo-cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther. 1983 Jan;224(1):100–107. [PubMed] [Google Scholar]
  24. Lowe D. G., Chang M. S., Hellmiss R., Chen E., Singh S., Garbers D. L., Goeddel D. V. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 1989 May;8(5):1377–1384. doi: 10.1002/j.1460-2075.1989.tb03518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maack T., Suzuki M., Almeida F. A., Nussenzveig D., Scarborough R. M., McEnroe G. A., Lewicki J. A. Physiological role of silent receptors of atrial natriuretic factor. Science. 1987 Oct 30;238(4827):675–678. doi: 10.1126/science.2823385. [DOI] [PubMed] [Google Scholar]
  26. Mazzocchi G., Rebuffat P., Nussdorfer G. G. Atrial natriuretic factor (ANF) inhibits the growth and the secretory activity of rat adrenal zona glomerulosa in vivo. J Steroid Biochem. 1987 Dec;28(6):643–646. doi: 10.1016/0022-4731(87)90392-x. [DOI] [PubMed] [Google Scholar]
  27. Morii N., Nakao K., Kihara M., Sugawara A., Sakamoto M., Yamori Y., Imura H. Decreased content in left atrium and increased plasma concentration of atrial natriuretic polypeptide in spontaneously hypertensive rats (SHR) and SHR stroke-prone. Biochem Biophys Res Commun. 1986 Feb 26;135(1):74–81. doi: 10.1016/0006-291x(86)90944-7. [DOI] [PubMed] [Google Scholar]
  28. Naftilan A. J., Pratt R. E., Dzau V. J. Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest. 1989 Apr;83(4):1419–1424. doi: 10.1172/JCI114032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Naftilan A. J., Pratt R. E., Eldridge C. S., Lin H. L., Dzau V. J. Angiotensin II induces c-fos expression in smooth muscle via transcriptional control. Hypertension. 1989 Jun;13(6 Pt 2):706–711. doi: 10.1161/01.hyp.13.6.706. [DOI] [PubMed] [Google Scholar]
  30. Needleman P., Adams S. P., Cole B. R., Currie M. G., Geller D. M., Michener M. L., Saper C. B., Schwartz D., Standaert D. G. Atriopeptins as cardiac hormones. Hypertension. 1985 Jul-Aug;7(4):469–482. doi: 10.1161/01.hyp.7.4.469. [DOI] [PubMed] [Google Scholar]
  31. Owens G. K. Differential effects of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy, and hyperplasia in the spontaneously hypertensive rat. Circ Res. 1985 Apr;56(4):525–536. doi: 10.1161/01.res.56.4.525. [DOI] [PubMed] [Google Scholar]
  32. Owens G. K., Geisterfer A. A., Yang Y. W., Komoriya A. Transforming growth factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol. 1988 Aug;107(2):771–780. doi: 10.1083/jcb.107.2.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Owens G. K., Loeb A., Gordon D., Thompson M. M. Expression of smooth muscle-specific alpha-isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J Cell Biol. 1986 Feb;102(2):343–352. doi: 10.1083/jcb.102.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Owens G. K., Reidy M. A. Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circ Res. 1985 Nov;57(5):695–705. doi: 10.1161/01.res.57.5.695. [DOI] [PubMed] [Google Scholar]
  35. Owens G. K., Schwartz S. M. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circ Res. 1982 Sep;51(3):280–289. doi: 10.1161/01.res.51.3.280. [DOI] [PubMed] [Google Scholar]
  36. Owens G. K., Schwartz S. M. Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res. 1983 Oct;53(4):491–501. doi: 10.1161/01.res.53.4.491. [DOI] [PubMed] [Google Scholar]
  37. Sugawara A., Nakao K., Morii N., Sakamoto M., Suda M., Shimokura M., Kiso Y., Kihara M., Yamori Y., Nishimura K. Alpha-human atrial natriuretic polypeptide is released from the heart and circulates in the body. Biochem Biophys Res Commun. 1985 Jun 14;129(2):439–446. doi: 10.1016/0006-291x(85)90170-6. [DOI] [PubMed] [Google Scholar]
  38. Sugawara A., Nakao K., Sakamoto M., Morii N., Yamada T., Itoh H., Shiono S., Imura H. Plasma concentration of atrial natriuretic polypeptide in essential hypertension. Lancet. 1985 Dec 21;2(8469-70):1426–1427. doi: 10.1016/s0140-6736(85)92592-9. [DOI] [PubMed] [Google Scholar]
  39. Sugimoto T., Ishii M., Hirata Y., Matsuoka H., Sugimoto T., Miyata A., Toshimori T., Masuda H., Kangawa K., Matsuo H. Increased release of atrial natriuretic polypeptides in rats with DOCA-salt hypertension. Life Sci. 1986 Apr 14;38(15):1351–1358. doi: 10.1016/0024-3205(86)90467-4. [DOI] [PubMed] [Google Scholar]
  40. Taubman M. B., Berk B. C., Izumo S., Tsuda T., Alexander R. W., Nadal-Ginard B. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem. 1989 Jan 5;264(1):526–530. [PubMed] [Google Scholar]
  41. Wang D. H., Prewitt R. L. Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats. Hypertension. 1990 Jan;15(1):68–77. doi: 10.1161/01.hyp.15.1.68. [DOI] [PubMed] [Google Scholar]
  42. de Bold A. J., Borenstein H. B., Veress A. T., Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981 Jan 5;28(1):89–94. doi: 10.1016/0024-3205(81)90370-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES