Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 13;65(Pt 7):o1575–o1576. doi: 10.1107/S1600536809021850

(E)-1-(2-Thien­yl)-3-(3,4,5-trimethoxy­phen­yl)prop-2-en-1-one1

Thitipone Suwunwong a, Suchada Chantrapromma a,*,, Paradorn Pakdeevanich b, Hoong-Kun Fun c,§
PMCID: PMC2969210  PMID: 21582853

Abstract

The mol­ecule of the title heteroaryl chalcone, C16H16O4S, which consists of substituted thio­phene and benzene rings bridged by the prop-2-en-1-one group, is slightly twisted. The dihedral angle between the thio­phene and 3,4,5-trimethoxy­phenyl rings is 12.18 (4)°. The three meth­oxy groups have two different conformations; two meth­oxy groups are coplanar [C—O—C—C torsion angles = −1.38 (12) and 0.47 (12)°] whereas the third is (-)-synclinal with the benzene ring. In the crystal structure, adjacent mol­ecules are linked in a face-to-side manner into chains along the c axis by weak C—H⋯O(enone) inter­actions. These chains are stacked along the b axis by weak C—H⋯O(meth­oxy) inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Patil et al. (2006; 2007); Suwunwong et al. (2009a ,b ). For background to and applications of chalcones, see: Dimmock et al. (1999); Go et al. (2005); Jung et al. (2008); Ni et al. (2004); Patil et al. (2007); Patil & Dharmaprakash (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).graphic file with name e-65-o1575-scheme1.jpg

Experimental

Crystal data

  • C16H16O4S

  • M r = 304.36

  • Orthorhombic, Inline graphic

  • a = 25.3323 (8) Å

  • b = 3.9816 (1) Å

  • c = 14.0163 (4) Å

  • V = 1413.73 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.58 × 0.31 × 0.21 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.872, T max = 0.951

  • 56940 measured reflections

  • 7416 independent reflections

  • 7177 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.099

  • S = 1.10

  • 7416 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983), 3588 Friedel pairs

  • Flack parameter: 0.04 (4)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021850/sj2627sup1.cif

e-65-o1575-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021850/sj2627Isup2.hkl

e-65-o1575-Isup2.hkl (362.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.93 2.52 3.1827 (14) 129
C15—H15C⋯O3ii 0.96 2.39 3.3340 (11) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the Prince of Songkla University through the Crystal Materials Research Unit is gratefully acknowledged. TS thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcone or 1,3-diaryl-2-propen-1-one, originally isolated from natural sources, and its derivatives are known to display a variety of biological activities, demonstrating analgesic, anti-inflammatory, antibacterial and antimycotic properties (Dimmock et al., 1999; Go et al., 2005; Ni et al., 2004). Moreover synthetic chalcones have also been found to be non-linear optical (NLO) (Patil & Dharmaprakash, 2008) and electro-active fluorescent materials (Jung et al., 2008). We have previously reported the synthesis and crystal structures of chalcone derivatives (Chantrapromma et al., 2009; Suwunwong et al., 2009a, b). Our research into the NLO and biological properties of chalcone derivatives led us to synthesize the title heteroaryl chalcone (I). (I) crystallizes in the non-centrosymmetric orthorhombic space group Pna21 and should therefore exhibit second-order nonlinear optical properties.

The molecule of the title heteroaryl chalcone (Fig. 1) exists in an E configuration with respect to the C6═C7 double bond [1.3437 (11) Å] with a C5–C6–C7–C8 torsion angle 176.81 (8)°. The whole molecule is twisted as shown by the interplanar angle between thiophene and 3,4,5-trimethoxyphenyl rings being 12.18 (4)°. The propenone unit (C5—C7/O1) is also twisted with the O1–C5–C6–C7 torsion angle 10.94 (15)°. The three substituted methoxy groups of 3,4,5-trimethoxyphenyl unit have two different orientations: two methoxy groups (at the C10 and C12 positions) are co-planar with the phenyl ring with torsion angles C14–O2–C10–C9 = -1.38 (12)° and C16–O4–C12–C13 = 0.47 (12)° whereas the one at C11 is (-)-syn-clinally attached with the C15–O3–C11–C12 torsion angle -76.76 (10)°. In the structure, weak intramolecular C7—H7A···O1 and C15—H15B···O4 interactions generate S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995). The bond distances have normal values (Allen et al., 1987) and bond lengths and angles are comparable with closely related structures (Chantrapromma et al., 2009; Patil et al., 2006; 2007; Suwunwong et al., 2009a, b).

In the crystal packing, the adjacent molecules are linked in a face-to-side manner into chains along the c axis through the enone unit by weak C1—H1A···O1 interactions (Fig. 2, Table 1). Weak C15—H15C···O3 interactions involving one of methoxy groups further stack these chains along the b axis (Fig. 3, Table 1).

Experimental

The title compound was synthesized by the condensation of 3,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acetylthiophene (0.35 ml, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH (aq) (5 ml). After stirring for 3 h in ice bath at 278 K, the resulting pale yellow solid was collected by filtration, washed with distilled water, dried in air and purified by repeated recrystallization from acetone (72% yield). Pale yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 420–421 K.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.22 Å from C3 and the deepest hole is located at 0.20 Å from S1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis, showing chains running along the c axis. Weak C—H···O interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

The crystal packing of the title compound viewed along the a axis, showing chains stacking along the b axis. Weak C—H···O interactions are shown as dashed lines and hydrogen atoms not involved in C—H···O interactions were omitted for clarity.

Crystal data

C16H16O4S Dx = 1.430 Mg m3
Mr = 304.36 Melting point = 420–421 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 7416 reflections
a = 25.3323 (8) Å θ = 2.2–37.5°
b = 3.9816 (1) Å µ = 0.24 mm1
c = 14.0163 (4) Å T = 100 K
V = 1413.73 (7) Å3 Block, pale yellow
Z = 4 0.58 × 0.31 × 0.21 mm
F(000) = 640

Data collection

Bruker APEXII CCD area-detector diffractometer 7416 independent reflections
Radiation source: sealed tube 7177 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 37.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −43→43
Tmin = 0.872, Tmax = 0.951 k = −6→6
56940 measured reflections l = −23→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.1429P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
7416 reflections Δρmax = 0.66 e Å3
193 parameters Δρmin = −0.54 e Å3
1 restraint Absolute structure: Flack (1983), 3588 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.04 (4)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.249987 (8) 0.46794 (6) 0.47989 (2) 0.01892 (5)
O1 0.25370 (3) 0.4617 (3) 0.68801 (7) 0.02618 (18)
O2 0.40965 (3) 0.51095 (18) 1.13056 (5) 0.01662 (11)
O3 0.49824 (2) 0.83176 (19) 1.08244 (5) 0.01615 (10)
O4 0.51691 (3) 1.02802 (19) 0.90201 (5) 0.01753 (11)
C1 0.28105 (4) 0.5872 (3) 0.37853 (6) 0.02121 (16)
H1A 0.2679 0.5465 0.3177 0.025*
C2 0.32771 (4) 0.7503 (3) 0.39595 (7) 0.02174 (16)
H2A 0.3493 0.8331 0.3477 0.026*
C3 0.34021 (3) 0.7815 (2) 0.49530 (5) 0.01517 (12)
H3A 0.3702 0.8844 0.5200 0.018*
C4 0.29890 (3) 0.6283 (2) 0.55061 (6) 0.01440 (12)
C5 0.29401 (3) 0.5880 (2) 0.65390 (6) 0.01617 (13)
C6 0.33914 (3) 0.6919 (2) 0.71401 (6) 0.01613 (13)
H6A 0.3662 0.8202 0.6878 0.019*
C7 0.34122 (3) 0.6018 (2) 0.80632 (6) 0.01549 (13)
H7A 0.3122 0.4836 0.8294 0.019*
C8 0.38341 (3) 0.6666 (2) 0.87483 (5) 0.01329 (11)
C9 0.37539 (3) 0.5559 (2) 0.96864 (6) 0.01372 (11)
H9A 0.3441 0.4479 0.9849 0.016*
C10 0.41415 (3) 0.6073 (2) 1.03751 (5) 0.01261 (11)
C11 0.46146 (3) 0.7683 (2) 1.01284 (5) 0.01296 (11)
C12 0.46951 (3) 0.8767 (2) 0.91840 (5) 0.01333 (12)
C13 0.43078 (3) 0.8266 (2) 0.84955 (6) 0.01399 (12)
H13A 0.4362 0.8985 0.7872 0.017*
C14 0.36101 (4) 0.3538 (2) 1.15750 (6) 0.01816 (14)
H14A 0.3619 0.3001 1.2243 0.027*
H14B 0.3563 0.1516 1.1212 0.027*
H14C 0.3322 0.5043 1.1452 0.027*
C15 0.54355 (3) 0.6178 (2) 1.07845 (8) 0.02027 (15)
H15A 0.5681 0.6817 1.1274 0.030*
H15B 0.5601 0.6391 1.0172 0.030*
H15C 0.5329 0.3890 1.0881 0.030*
C16 0.52661 (4) 1.1439 (3) 0.80695 (6) 0.01969 (15)
H16A 0.5598 1.2597 0.8049 0.030*
H16B 0.4989 1.2941 0.7880 0.030*
H16C 0.5276 0.9555 0.7642 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01673 (9) 0.02390 (10) 0.01613 (9) −0.00032 (6) −0.00311 (6) 0.00034 (9)
O1 0.0181 (3) 0.0441 (5) 0.0164 (3) −0.0106 (3) −0.0019 (2) 0.0083 (3)
O2 0.0169 (2) 0.0225 (3) 0.0104 (2) −0.0028 (2) 0.00034 (19) 0.00240 (19)
O3 0.0152 (2) 0.0203 (3) 0.0130 (2) −0.00066 (19) −0.00317 (18) −0.0026 (2)
O4 0.0148 (2) 0.0241 (3) 0.0136 (2) −0.0053 (2) 0.0005 (2) 0.0021 (2)
C1 0.0243 (4) 0.0266 (4) 0.0127 (3) 0.0053 (3) −0.0033 (3) −0.0005 (3)
C2 0.0220 (4) 0.0247 (4) 0.0185 (3) 0.0027 (3) 0.0059 (3) 0.0038 (3)
C3 0.0144 (3) 0.0203 (3) 0.0108 (3) 0.0051 (2) −0.0017 (2) −0.0003 (2)
C4 0.0135 (3) 0.0168 (3) 0.0129 (3) 0.0002 (2) −0.0012 (2) 0.0020 (2)
C5 0.0142 (3) 0.0215 (3) 0.0128 (3) −0.0013 (3) −0.0015 (2) 0.0025 (2)
C6 0.0147 (3) 0.0199 (3) 0.0138 (3) −0.0014 (2) −0.0017 (2) 0.0012 (2)
C7 0.0134 (3) 0.0206 (3) 0.0125 (3) −0.0006 (2) −0.0014 (2) 0.0006 (2)
C8 0.0123 (3) 0.0168 (3) 0.0108 (2) 0.0004 (2) −0.0006 (2) −0.0002 (2)
C9 0.0125 (3) 0.0169 (3) 0.0117 (3) −0.0006 (2) −0.0001 (2) 0.0002 (2)
C10 0.0128 (3) 0.0149 (3) 0.0101 (3) 0.0006 (2) 0.0003 (2) 0.0001 (2)
C11 0.0130 (3) 0.0153 (3) 0.0105 (2) −0.0002 (2) −0.0003 (2) −0.0003 (2)
C12 0.0127 (3) 0.0157 (3) 0.0116 (3) −0.0003 (2) 0.0010 (2) −0.0007 (2)
C13 0.0129 (3) 0.0178 (3) 0.0113 (3) 0.0000 (2) 0.0002 (2) 0.0001 (2)
C14 0.0186 (3) 0.0206 (4) 0.0152 (3) −0.0016 (3) 0.0039 (2) 0.0030 (3)
C15 0.0174 (3) 0.0188 (3) 0.0246 (4) 0.0001 (3) −0.0066 (3) −0.0001 (3)
C16 0.0171 (3) 0.0252 (4) 0.0168 (3) −0.0013 (3) 0.0032 (3) 0.0051 (3)

Geometric parameters (Å, °)

S1—C1 1.6921 (11) C7—C8 1.4598 (11)
S1—C4 1.7104 (8) C7—H7A 0.9300
O1—C5 1.2347 (11) C8—C9 1.4015 (11)
O2—C10 1.3642 (10) C8—C13 1.4040 (11)
O2—C14 1.4325 (11) C9—C10 1.3920 (11)
O3—C11 1.3725 (10) C9—H9A 0.9300
O3—C15 1.4304 (12) C10—C11 1.4023 (11)
O4—C12 1.3630 (10) C11—C12 1.4073 (11)
O4—C16 1.4312 (11) C12—C13 1.3905 (11)
C1—C2 1.3704 (15) C13—H13A 0.9300
C1—H1A 0.9300 C14—H14A 0.9600
C2—C3 1.4335 (13) C14—H14B 0.9600
C2—H2A 0.9300 C14—H14C 0.9600
C3—C4 1.4382 (12) C15—H15A 0.9600
C3—H3A 0.9300 C15—H15B 0.9600
C4—C5 1.4619 (12) C15—H15C 0.9600
C5—C6 1.4792 (12) C16—H16A 0.9600
C6—C7 1.3437 (11) C16—H16B 0.9600
C6—H6A 0.9300 C16—H16C 0.9600
C1—S1—C4 92.57 (5) O2—C10—C9 124.24 (7)
C10—O2—C14 116.54 (7) O2—C10—C11 115.83 (7)
C11—O3—C15 114.04 (7) C9—C10—C11 119.93 (7)
C12—O4—C16 116.78 (7) O3—C11—C10 119.29 (7)
C2—C1—S1 112.61 (7) O3—C11—C12 120.91 (7)
C2—C1—H1A 123.7 C10—C11—C12 119.73 (7)
S1—C1—H1A 123.7 O4—C12—C13 124.62 (7)
C1—C2—C3 113.88 (8) O4—C12—C11 114.94 (7)
C1—C2—H2A 123.1 C13—C12—C11 120.43 (7)
C3—C2—H2A 123.1 C12—C13—C8 119.54 (7)
C2—C3—C4 109.02 (8) C12—C13—H13A 120.2
C2—C3—H3A 125.5 C8—C13—H13A 120.2
C4—C3—H3A 125.5 O2—C14—H14A 109.5
C3—C4—C5 129.94 (7) O2—C14—H14B 109.5
C3—C4—S1 111.91 (6) H14A—C14—H14B 109.5
C5—C4—S1 118.14 (6) O2—C14—H14C 109.5
O1—C5—C4 119.89 (8) H14A—C14—H14C 109.5
O1—C5—C6 122.19 (8) H14B—C14—H14C 109.5
C4—C5—C6 117.90 (7) O3—C15—H15A 109.5
C7—C6—C5 120.26 (8) O3—C15—H15B 109.5
C7—C6—H6A 119.9 H15A—C15—H15B 109.5
C5—C6—H6A 119.9 O3—C15—H15C 109.5
C6—C7—C8 127.94 (8) H15A—C15—H15C 109.5
C6—C7—H7A 116.0 H15B—C15—H15C 109.5
C8—C7—H7A 116.0 O4—C16—H16A 109.5
C9—C8—C13 120.22 (7) O4—C16—H16B 109.5
C9—C8—C7 117.10 (7) H16A—C16—H16B 109.5
C13—C8—C7 122.68 (7) O4—C16—H16C 109.5
C10—C9—C8 120.15 (7) H16A—C16—H16C 109.5
C10—C9—H9A 119.9 H16B—C16—H16C 109.5
C8—C9—H9A 119.9
C4—S1—C1—C2 −0.66 (8) C14—O2—C10—C11 178.47 (7)
S1—C1—C2—C3 0.53 (11) C8—C9—C10—O2 179.44 (8)
C1—C2—C3—C4 −0.06 (11) C8—C9—C10—C11 −0.40 (12)
C2—C3—C4—C5 178.30 (9) C15—O3—C11—C10 106.33 (9)
C2—C3—C4—S1 −0.43 (9) C15—O3—C11—C12 −76.76 (10)
C1—S1—C4—C3 0.62 (7) O2—C10—C11—O3 −2.98 (11)
C1—S1—C4—C5 −178.27 (7) C9—C10—C11—O3 176.88 (8)
C3—C4—C5—O1 176.49 (10) O2—C10—C11—C12 −179.93 (7)
S1—C4—C5—O1 −4.85 (13) C9—C10—C11—C12 −0.07 (12)
C3—C4—C5—C6 −5.52 (14) C16—O4—C12—C13 0.47 (12)
S1—C4—C5—C6 173.14 (7) C16—O4—C12—C11 −179.67 (8)
O1—C5—C6—C7 10.94 (15) O3—C11—C12—O4 3.51 (11)
C4—C5—C6—C7 −166.99 (8) C10—C11—C12—O4 −179.59 (7)
C5—C6—C7—C8 176.81 (8) O3—C11—C12—C13 −176.63 (8)
C6—C7—C8—C9 177.83 (9) C10—C11—C12—C13 0.27 (12)
C6—C7—C8—C13 −3.34 (14) O4—C12—C13—C8 179.86 (8)
C13—C8—C9—C10 0.69 (12) C11—C12—C13—C8 0.01 (12)
C7—C8—C9—C10 179.55 (8) C9—C8—C13—C12 −0.49 (12)
C14—O2—C10—C9 −1.38 (12) C7—C8—C13—C12 −179.29 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.93 2.52 3.1827 (14) 129
C7—H7A···O1 0.93 2.48 2.8243 (12) 102
C15—H15B···O4 0.96 2.49 3.0396 (13) 116
C15—H15C···O3ii 0.96 2.39 3.3340 (11) 169
C7—H7A···O1 0.93 2.48 2.8243 (12) 102
C15—H15B···O4 0.96 2.49 3.0396 (13) 116

Symmetry codes: (i) −x+1/2, y+1/2, z−1/2; (ii) x, y−1, z.

Footnotes

1

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2627).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. [DOI] [PMC free article] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem 6, 1125–1149. [PubMed]
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem 12, 483–499.
  9. Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.
  10. Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Patents, 14, 1669–1691.
  11. Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst E63, o2612.
  12. Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett 62, 451–453.
  13. Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A., Puranik, V. G. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4798–o4799.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009a). Acta Cryst. E65, o120. [DOI] [PMC free article] [PubMed]
  17. Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009b). Acta Cryst. E65, o420–o421. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021850/sj2627sup1.cif

e-65-o1575-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021850/sj2627Isup2.hkl

e-65-o1575-Isup2.hkl (362.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES