Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1705. doi: 10.1107/S160053680902412X

(E)-3-Bromo-N′-(2-chloro­benzyl­idene)benzohydrazide

Lan-Zhu Qu a, Guo-Biao Cao a,*
PMCID: PMC2969211  PMID: 21582957

Abstract

The title compound, C14H10BrClN2O, was synthesized by the reaction of 2-chloro­benzaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The mol­ecule displays an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 13.0 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains propagating along the c axis.

Related literature

For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For hydrazone compounds reported previously by our group, see: Qu et al. (2008); Yang et al. (2008); Cao & Lu (2009a ,b ).graphic file with name e-65-o1705-scheme1.jpg

Experimental

Crystal data

  • C14H10BrClN2O

  • M r = 337.60

  • Monoclinic, Inline graphic

  • a = 13.140 (1) Å

  • b = 12.632 (1) Å

  • c = 8.377 (1) Å

  • β = 98.174 (2)°

  • V = 1376.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 298 K

  • 0.27 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.481, T max = 0.542 (expected range = 0.442–0.498)

  • 8319 measured reflections

  • 2998 independent reflections

  • 2235 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.076

  • S = 1.03

  • 2998 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902412X/ci2833sup1.cif

e-65-o1705-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902412X/ci2833Isup2.hkl

e-65-o1705-Isup2.hkl (147.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 (1) 1.98 (1) 2.854 (2) 165 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The Vital Foundation of Ankang University (Project No. 2008AKXY012) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02 J K202) are gratefully acknowledged.

supplementary crystallographic information

Comment

Study on the crystal structures of hydrazone derivatives is a hot topic in structural chemistry. In the last few years, the crystal structures of a large number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008; Cao & Lu, 2009a,b), the title new hydrazone compound derived from the reaction of 2-chlorobenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide is reported.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 13.0 (2)°. The molecule displays an E configuration about the C═N bond. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

Experimental

The title compound was prepared by refluxing equimolar quantities of 2-chlorobenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed by slow evaporation of the solution in air.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93 Å, and with Uiso(H) set at 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C14H10BrClN2O F(000) = 672
Mr = 337.60 Dx = 1.629 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2981 reflections
a = 13.140 (1) Å θ = 2.2–27.5°
b = 12.632 (1) Å µ = 3.17 mm1
c = 8.377 (1) Å T = 298 K
β = 98.174 (2)° Block, colourless
V = 1376.3 (2) Å3 0.27 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2998 independent reflections
Radiation source: fine-focus sealed tube 2235 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −16→15
Tmin = 0.481, Tmax = 0.542 k = −16→13
8319 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.7889P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2998 reflections Δρmax = 0.52 e Å3
176 parameters Δρmin = −0.65 e Å3
1 restraint Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0155 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.03493 (2) 0.63367 (3) 0.15480 (4) 0.06855 (15)
Cl1 0.71461 (6) 1.15851 (6) 0.46918 (11) 0.0757 (3)
N1 0.69113 (14) 0.83453 (15) 0.6106 (2) 0.0358 (4)
N2 0.74414 (15) 0.76627 (15) 0.5225 (2) 0.0378 (4)
O1 0.75662 (14) 0.64019 (12) 0.71573 (18) 0.0477 (4)
C1 0.62315 (16) 1.00731 (17) 0.6291 (3) 0.0342 (5)
C2 0.62851 (18) 1.11440 (19) 0.5940 (3) 0.0433 (6)
C3 0.5678 (2) 1.1884 (2) 0.6563 (3) 0.0542 (7)
H3 0.5732 1.2596 0.6310 0.065*
C4 0.4996 (2) 1.1563 (2) 0.7553 (3) 0.0572 (7)
H4 0.4581 1.2057 0.7970 0.069*
C5 0.4924 (2) 1.0510 (2) 0.7933 (3) 0.0523 (7)
H5 0.4459 1.0293 0.8607 0.063*
C6 0.55369 (18) 0.9775 (2) 0.7319 (3) 0.0429 (6)
H6 0.5487 0.9066 0.7596 0.052*
C7 0.68317 (17) 0.92838 (18) 0.5560 (3) 0.0367 (5)
H7 0.7159 0.9469 0.4686 0.044*
C8 0.77228 (16) 0.67075 (17) 0.5825 (2) 0.0336 (5)
C9 0.82605 (15) 0.60205 (17) 0.4763 (2) 0.0319 (5)
C10 0.89265 (16) 0.64395 (18) 0.3775 (3) 0.0359 (5)
H10 0.9036 0.7166 0.3742 0.043*
C11 0.94190 (17) 0.5767 (2) 0.2851 (3) 0.0395 (5)
C12 0.9267 (2) 0.4693 (2) 0.2864 (3) 0.0487 (6)
H12 0.9603 0.4249 0.2225 0.058*
C13 0.8606 (2) 0.4287 (2) 0.3844 (3) 0.0498 (6)
H13 0.8490 0.3561 0.3859 0.060*
C14 0.81123 (18) 0.49435 (18) 0.4804 (3) 0.0411 (5)
H14 0.7679 0.4658 0.5479 0.049*
H2 0.749 (2) 0.784 (2) 0.4206 (17) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0647 (2) 0.0867 (3) 0.0630 (2) 0.00759 (16) 0.03940 (15) 0.00891 (15)
Cl1 0.0682 (5) 0.0610 (5) 0.1056 (6) 0.0046 (4) 0.0393 (4) 0.0307 (4)
N1 0.0373 (10) 0.0395 (11) 0.0326 (9) 0.0065 (8) 0.0121 (8) −0.0033 (8)
N2 0.0477 (11) 0.0400 (11) 0.0292 (9) 0.0105 (9) 0.0168 (8) 0.0004 (8)
O1 0.0696 (12) 0.0445 (10) 0.0339 (8) 0.0059 (8) 0.0236 (8) 0.0038 (7)
C1 0.0307 (11) 0.0393 (12) 0.0322 (11) 0.0033 (9) 0.0031 (9) −0.0017 (9)
C2 0.0375 (12) 0.0439 (14) 0.0487 (14) 0.0022 (10) 0.0063 (10) 0.0019 (10)
C3 0.0551 (15) 0.0383 (14) 0.0686 (18) 0.0081 (12) 0.0063 (14) −0.0028 (12)
C4 0.0551 (16) 0.0562 (17) 0.0609 (17) 0.0170 (13) 0.0102 (14) −0.0140 (13)
C5 0.0474 (14) 0.0642 (18) 0.0484 (15) 0.0073 (13) 0.0175 (12) −0.0042 (13)
C6 0.0429 (13) 0.0435 (14) 0.0443 (13) 0.0035 (11) 0.0127 (11) −0.0016 (11)
C7 0.0383 (12) 0.0423 (14) 0.0314 (11) 0.0033 (10) 0.0114 (9) 0.0015 (10)
C8 0.0352 (11) 0.0369 (12) 0.0300 (11) 0.0002 (9) 0.0096 (9) −0.0022 (9)
C9 0.0297 (11) 0.0382 (12) 0.0280 (10) 0.0051 (9) 0.0049 (8) 0.0002 (9)
C10 0.0369 (12) 0.0392 (12) 0.0329 (11) 0.0027 (10) 0.0088 (9) −0.0006 (9)
C11 0.0341 (11) 0.0526 (15) 0.0336 (11) 0.0064 (10) 0.0112 (9) 0.0018 (10)
C12 0.0508 (14) 0.0518 (16) 0.0450 (14) 0.0149 (12) 0.0119 (11) −0.0089 (12)
C13 0.0573 (15) 0.0353 (13) 0.0576 (15) 0.0054 (12) 0.0114 (12) −0.0040 (11)
C14 0.0410 (13) 0.0413 (14) 0.0427 (13) 0.0021 (10) 0.0120 (10) 0.0025 (10)

Geometric parameters (Å, °)

Br1—C11 1.892 (2) C5—C6 1.376 (3)
Cl1—C2 1.738 (2) C5—H5 0.93
N1—C7 1.270 (3) C6—H6 0.93
N1—N2 1.386 (2) C7—H7 0.93
N2—C8 1.339 (3) C8—C9 1.491 (3)
N2—H2 0.893 (10) C9—C14 1.376 (3)
O1—C8 1.226 (2) C9—C10 1.392 (3)
C1—C2 1.388 (3) C10—C11 1.372 (3)
C1—C6 1.393 (3) C10—H10 0.93
C1—C7 1.459 (3) C11—C12 1.372 (4)
C2—C3 1.378 (3) C12—C13 1.376 (4)
C3—C4 1.366 (4) C12—H12 0.93
C3—H3 0.93 C13—C14 1.379 (3)
C4—C5 1.374 (4) C13—H13 0.93
C4—H4 0.93 C14—H14 0.93
C7—N1—N2 114.24 (17) N1—C7—H7 119.7
C8—N2—N1 119.58 (17) C1—C7—H7 119.7
C8—N2—H2 122 (2) O1—C8—N2 123.53 (19)
N1—N2—H2 118 (2) O1—C8—C9 121.02 (19)
C2—C1—C6 116.9 (2) N2—C8—C9 115.44 (18)
C2—C1—C7 122.0 (2) C14—C9—C10 119.6 (2)
C6—C1—C7 121.1 (2) C14—C9—C8 118.69 (19)
C3—C2—C1 122.1 (2) C10—C9—C8 121.7 (2)
C3—C2—Cl1 118.1 (2) C11—C10—C9 119.2 (2)
C1—C2—Cl1 119.79 (18) C11—C10—H10 120.4
C4—C3—C2 119.6 (2) C9—C10—H10 120.4
C4—C3—H3 120.2 C10—C11—C12 121.8 (2)
C2—C3—H3 120.2 C10—C11—Br1 119.05 (18)
C3—C4—C5 120.1 (2) C12—C11—Br1 119.17 (17)
C3—C4—H4 120.0 C11—C12—C13 118.6 (2)
C5—C4—H4 120.0 C11—C12—H12 120.7
C4—C5—C6 120.2 (2) C13—C12—H12 120.7
C4—C5—H5 119.9 C12—C13—C14 120.8 (2)
C6—C5—H5 119.9 C12—C13—H13 119.6
C5—C6—C1 121.3 (2) C14—C13—H13 119.6
C5—C6—H6 119.4 C9—C14—C13 120.0 (2)
C1—C6—H6 119.4 C9—C14—H14 120.0
N1—C7—C1 120.54 (19) C13—C14—H14 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.89 (1) 1.98 (1) 2.854 (2) 165 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2833).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587. [DOI] [PMC free article] [PubMed]
  4. Cao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600. [DOI] [PMC free article] [PubMed]
  5. Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [DOI] [PMC free article] [PubMed]
  6. Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466. [DOI] [PMC free article] [PubMed]
  7. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  8. Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yang, D.-S. (2007). J. Chem. Crystallogr.37, 343–348.
  11. Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [DOI] [PMC free article] [PubMed]
  12. You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem.82, 2215–2219.
  13. Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902412X/ci2833sup1.cif

e-65-o1705-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902412X/ci2833Isup2.hkl

e-65-o1705-Isup2.hkl (147.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES