Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 17;65(Pt 7):o1590. doi: 10.1107/S1600536809021825

rac-7-Oxabicyclo­[2.2.1]heptane-2,3-dicarboxylic acid–2-amino-1,3,4-thia­diazole–water (1/1/1)

Na Wang a, Qiu-Yue Lin a,*, Yan-Jun Wang a
PMCID: PMC2969213  PMID: 21582865

Abstract

The title compound, C8H10O5·C2H3N3S·H2O, was synthesized by the reaction of 2-amino-1,3,4-thia­diazole with norcantharidin. The crystal structure is stabilized by N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds. In addition, weak π–π inter­actions are observed between symmetry-related thia­diazole ring systems [centroid–centroid distance = 3.9110 (3) Å, inter­planar spacing = 3.4845 Å].

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarboxylic anhydride (nor­cantharidin) is a lower toxicity anti­cancer drug, see: Shimi & Zaki (1982).graphic file with name e-65-o1590-scheme1.jpg

Experimental

Crystal data

  • C8H10O5·C2H3N3S·H2O

  • M r = 305.31

  • Monoclinic, Inline graphic

  • a = 5.7678 (5) Å

  • b = 18.4267 (15) Å

  • c = 12.7546 (11) Å

  • β = 101.336 (6)°

  • V = 1329.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.30 × 0.16 × 0.09 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.949, T max = 0.977

  • 10820 measured reflections

  • 2995 independent reflections

  • 2026 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.133

  • S = 1.05

  • 2995 reflections

  • 187 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021825/at2800sup1.cif

e-65-o1590-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021825/at2800Isup2.hkl

e-65-o1590-Isup2.hkl (189KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.11 2.930 (3) 160
N1—H1C⋯N3ii 0.86 2.15 2.994 (3) 166
N1—H1C⋯N2ii 0.86 2.69 3.519 (3) 161
O2—H2A⋯O1Wiii 0.82 1.81 2.626 (2) 176
O5—H5B⋯N2iv 0.82 1.85 2.664 (2) 172
O1W—H1WA⋯O3v 0.859 (17) 1.910 (17) 2.766 (2) 175 (3)
O1W—H1WB⋯O4vi 0.819 (17) 2.51 (3) 3.151 (3) 137 (3)
O1W—H1WB⋯O1vi 0.819 (17) 2.55 (3) 3.061 (3) 122 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

supplementary crystallographic information

Comment

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi & Zaki, 1982). The title compound was synthesized by the reaction of 2-amino-1,3,4-thiadiazole with 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin). In this paper, we reports its structure.

X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The crystal structure is stabilized by N—H···O, N—H···N, O—H···O and O—H···N hydrogen bonds (Table 1). Further, weak π–π interactions are observed between symmetry related thiadiazole ring systems [centroid-centroid distance of 3.9110 (3)Å and interplanar spacing of 3.4845 Å].

Experimental

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride and 2-amino-1,3,4-thiadiazole were dissolved in tetrahydrofuran and the mixture was stirred for 6 h at room temperature. The clear solution was left undisturbed for days to give colourless crystals of the compound.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using ariding model [C—H =0.93- 0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å and Uiso(H) = 1.2 or 1.5Ueq(C,N,O)]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Crystal data

C8H10O5·C2H3N3S·H2O F(000) = 640
Mr = 305.31 Dx = 1.526 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1905 reflections
a = 5.7678 (5) Å θ = 2.0–27.6°
b = 18.4267 (15) Å µ = 0.27 mm1
c = 12.7546 (11) Å T = 296 K
β = 101.336 (6)° Block, colourless
V = 1329.1 (2) Å3 0.30 × 0.16 × 0.09 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 2995 independent reflections
Radiation source: fine-focus sealed tube 2026 reflections with I > 2σ(I)
graphite Rint = 0.040
ω scans θmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→7
Tmin = 0.949, Tmax = 0.977 k = −24→23
10820 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.062P)2 + 0.3174P] where P = (Fo2 + 2Fc2)/3
2995 reflections (Δ/σ)max = 0.001
187 parameters Δρmax = 0.30 e Å3
3 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.2976 (5) 0.05357 (14) 0.3265 (2) 0.0537 (7)
H1B −0.3880 0.0947 0.3053 0.064*
C2 −0.0094 (4) −0.03835 (13) 0.37115 (19) 0.0401 (6)
C3 −0.7049 (4) −0.14263 (12) −0.02775 (19) 0.0371 (5)
H3A −0.7478 −0.1570 −0.1031 0.044*
C4 −0.4729 (4) −0.10527 (12) 0.11367 (19) 0.0378 (5)
H4A −0.3228 −0.0881 0.1563 0.045*
C5 −0.5597 (4) −0.17663 (11) 0.15371 (18) 0.0308 (5)
H5A −0.6555 −0.1649 0.2069 0.037*
C6 −0.7289 (4) −0.20482 (11) 0.05131 (18) 0.0320 (5)
H6A −0.8916 −0.2080 0.0630 0.038*
C7 −0.8388 (4) −0.07593 (13) −0.0002 (2) 0.0436 (6)
H7A −0.9932 −0.0888 0.0135 0.052*
H7B −0.8573 −0.0399 −0.0566 0.052*
C8 −0.6732 (4) −0.04919 (12) 0.1016 (2) 0.0451 (6)
H8A −0.7506 −0.0499 0.1626 0.054*
H8B −0.6158 −0.0006 0.0925 0.054*
C9 −0.3734 (4) −0.23059 (12) 0.20304 (18) 0.0339 (5)
C10 −0.6556 (4) −0.27519 (12) 0.00717 (19) 0.0357 (5)
S1 −0.00230 (12) 0.04890 (3) 0.32282 (6) 0.0514 (2)
N1 0.1766 (3) −0.08184 (12) 0.39063 (18) 0.0534 (6)
H1A 0.1631 −0.1250 0.4145 0.064*
H1C 0.3110 −0.0670 0.3794 0.064*
N2 −0.2197 (3) −0.05840 (10) 0.38689 (17) 0.0431 (5)
N3 −0.3854 (4) −0.00394 (11) 0.36078 (19) 0.0511 (6)
O1 −0.4621 (3) −0.12182 (8) 0.00484 (13) 0.0399 (4)
O1W 0.3491 (3) 0.19399 (12) 0.19534 (16) 0.0573 (5)
O2 −0.1540 (3) −0.20904 (9) 0.21051 (15) 0.0470 (5)
H2A −0.0641 −0.2405 0.2405 0.071*
O3 −0.4251 (3) −0.28854 (9) 0.23715 (14) 0.0453 (4)
O4 −0.4568 (3) −0.28772 (9) −0.00388 (16) 0.0527 (5)
O5 −0.8343 (3) −0.31955 (9) −0.02355 (17) 0.0575 (5)
H5B −0.7870 −0.3568 −0.0474 0.086*
H1WA 0.213 (4) 0.1986 (18) 0.212 (2) 0.086*
H1WB 0.317 (5) 0.2024 (19) 0.1311 (15) 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0577 (16) 0.0398 (14) 0.064 (2) 0.0017 (11) 0.0119 (14) 0.0069 (13)
C2 0.0431 (13) 0.0412 (13) 0.0358 (14) −0.0098 (10) 0.0075 (10) −0.0022 (10)
C3 0.0419 (13) 0.0369 (12) 0.0311 (13) 0.0077 (9) 0.0038 (10) −0.0009 (10)
C4 0.0383 (12) 0.0342 (12) 0.0394 (14) −0.0035 (9) 0.0041 (10) 0.0000 (10)
C5 0.0310 (11) 0.0334 (11) 0.0289 (12) 0.0019 (8) 0.0081 (9) 0.0004 (9)
C6 0.0280 (11) 0.0316 (11) 0.0371 (14) 0.0013 (8) 0.0081 (9) −0.0036 (9)
C7 0.0443 (13) 0.0368 (12) 0.0486 (16) 0.0118 (10) 0.0062 (11) 0.0015 (11)
C8 0.0606 (16) 0.0306 (12) 0.0448 (16) 0.0032 (10) 0.0119 (12) −0.0033 (11)
C9 0.0339 (12) 0.0390 (12) 0.0300 (13) 0.0015 (9) 0.0094 (9) −0.0002 (10)
C10 0.0366 (13) 0.0334 (12) 0.0365 (14) 0.0016 (9) 0.0058 (10) −0.0027 (9)
S1 0.0575 (4) 0.0399 (4) 0.0583 (5) −0.0095 (3) 0.0150 (3) 0.0073 (3)
N1 0.0475 (12) 0.0419 (12) 0.0697 (17) −0.0015 (9) 0.0089 (11) 0.0107 (11)
N2 0.0455 (11) 0.0354 (10) 0.0480 (13) −0.0044 (8) 0.0085 (9) 0.0048 (9)
N3 0.0462 (12) 0.0434 (12) 0.0625 (15) 0.0023 (9) 0.0083 (11) 0.0072 (11)
O1 0.0417 (9) 0.0391 (9) 0.0425 (10) 0.0032 (7) 0.0170 (7) 0.0082 (7)
O1W 0.0381 (10) 0.0837 (14) 0.0524 (12) −0.0079 (9) 0.0140 (9) −0.0121 (11)
O2 0.0315 (9) 0.0499 (10) 0.0589 (12) 0.0004 (7) 0.0068 (8) 0.0103 (8)
O3 0.0374 (9) 0.0435 (9) 0.0558 (12) 0.0049 (7) 0.0108 (8) 0.0171 (8)
O4 0.0406 (10) 0.0447 (10) 0.0747 (14) 0.0032 (7) 0.0163 (9) −0.0214 (9)
O5 0.0411 (10) 0.0362 (9) 0.0954 (16) −0.0057 (7) 0.0137 (9) −0.0213 (10)

Geometric parameters (Å, °)

C1—N3 1.287 (3) C6—H6A 0.9800
C1—S1 1.715 (3) C7—C8 1.534 (3)
C1—H1B 0.9300 C7—H7A 0.9700
C2—N2 1.320 (3) C7—H7B 0.9700
C2—N1 1.323 (3) C8—H8A 0.9700
C2—S1 1.725 (2) C8—H8B 0.9700
C3—O1 1.433 (3) C9—O3 1.212 (3)
C3—C7 1.529 (3) C9—O2 1.311 (3)
C3—C6 1.550 (3) C10—O4 1.205 (3)
C3—H3A 0.9800 C10—O5 1.313 (3)
C4—O1 1.434 (3) N1—H1A 0.8600
C4—C5 1.530 (3) N1—H1C 0.8600
C4—C8 1.535 (3) N2—N3 1.381 (3)
C4—H4A 0.9800 O1W—H1WA 0.859 (17)
C5—C9 1.508 (3) O1W—H1WB 0.819 (17)
C5—C6 1.558 (3) O2—H2A 0.8200
C5—H5A 0.9800 O5—H5B 0.8200
C6—C10 1.507 (3)
N3—C1—S1 115.3 (2) C5—C6—H6A 110.7
N3—C1—H1B 122.4 C3—C7—C8 101.18 (17)
S1—C1—H1B 122.4 C3—C7—H7A 111.5
N2—C2—N1 122.5 (2) C8—C7—H7A 111.5
N2—C2—S1 113.71 (18) C3—C7—H7B 111.5
N1—C2—S1 123.80 (18) C8—C7—H7B 111.5
O1—C3—C7 103.14 (18) H7A—C7—H7B 109.4
O1—C3—C6 102.49 (17) C7—C8—C4 101.53 (18)
C7—C3—C6 109.34 (19) C7—C8—H8A 111.5
O1—C3—H3A 113.6 C4—C8—H8A 111.5
C7—C3—H3A 113.6 C7—C8—H8B 111.5
C6—C3—H3A 113.6 C4—C8—H8B 111.5
O1—C4—C5 102.67 (17) H8A—C8—H8B 109.3
O1—C4—C8 102.77 (18) O3—C9—O2 122.9 (2)
C5—C4—C8 108.84 (18) O3—C9—C5 121.68 (19)
O1—C4—H4A 113.8 O2—C9—C5 115.39 (19)
C5—C4—H4A 113.8 O4—C10—O5 123.7 (2)
C8—C4—H4A 113.8 O4—C10—C6 123.5 (2)
C9—C5—C4 116.94 (17) O5—C10—C6 112.67 (18)
C9—C5—C6 114.05 (17) C1—S1—C2 86.76 (12)
C4—C5—C6 101.48 (17) C2—N1—H1A 120.0
C9—C5—H5A 108.0 C2—N1—H1C 120.0
C4—C5—H5A 108.0 H1A—N1—H1C 120.0
C6—C5—H5A 108.0 C2—N2—N3 111.89 (19)
C10—C6—C3 108.99 (18) C1—N3—N2 112.4 (2)
C10—C6—C5 115.12 (17) C3—O1—C4 96.42 (15)
C3—C6—C5 100.22 (17) H1WA—O1W—H1WB 101 (2)
C10—C6—H6A 110.7 C9—O2—H2A 109.5
C3—C6—H6A 110.7 C10—O5—H5B 109.5
O1—C4—C5—C9 90.1 (2) C6—C5—C9—O3 −62.0 (3)
C8—C4—C5—C9 −161.49 (19) C4—C5—C9—O2 2.8 (3)
O1—C4—C5—C6 −34.65 (19) C6—C5—C9—O2 120.9 (2)
C8—C4—C5—C6 73.8 (2) C3—C6—C10—O4 65.8 (3)
O1—C3—C6—C10 −86.2 (2) C5—C6—C10—O4 −45.8 (3)
C7—C3—C6—C10 164.91 (18) C3—C6—C10—O5 −110.5 (2)
O1—C3—C6—C5 35.06 (19) C5—C6—C10—O5 137.9 (2)
C7—C3—C6—C5 −73.9 (2) N3—C1—S1—C2 0.4 (2)
C9—C5—C6—C10 −10.1 (3) N2—C2—S1—C1 −0.1 (2)
C4—C5—C6—C10 116.51 (19) N1—C2—S1—C1 179.7 (2)
C9—C5—C6—C3 −126.86 (18) N1—C2—N2—N3 −179.9 (2)
C4—C5—C6—C3 −0.22 (19) S1—C2—N2—N3 −0.1 (3)
O1—C3—C7—C8 −34.6 (2) S1—C1—N3—N2 −0.5 (3)
C6—C3—C7—C8 73.9 (2) C2—N2—N3—C1 0.4 (3)
C3—C7—C8—C4 0.3 (2) C7—C3—O1—C4 56.17 (19)
O1—C4—C8—C7 33.9 (2) C6—C3—O1—C4 −57.40 (18)
C5—C4—C8—C7 −74.5 (2) C5—C4—O1—C3 57.35 (18)
C4—C5—C9—O3 179.9 (2) C8—C4—O1—C3 −55.63 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.86 2.11 2.930 (3) 160
N1—H1C···N3ii 0.86 2.15 2.994 (3) 166
N1—H1C···N2ii 0.86 2.69 3.519 (3) 161
O2—H2A···O1Wiii 0.82 1.81 2.626 (2) 176
O5—H5B···N2iv 0.82 1.85 2.664 (2) 172
O1W—H1WA···O3v 0.86 (2) 1.91 (2) 2.766 (2) 175 (3)
O1W—H1WB···O4vi 0.82 (2) 2.51 (3) 3.151 (3) 137 (3)
O1W—H1WB···O1vi 0.82 (2) 2.55 (3) 3.061 (3) 122 (3)

Symmetry codes: (i) x+1/2, −y−1/2, z+1/2; (ii) x+1, y, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y−1/2, z−1/2; (v) −x−1/2, y+1/2, −z+1/2; (vi) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2800).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Shimi, I. R. & Zaki, Z. (1982). Eur. J. Cancer Clin. Oncol.18, 785–793. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809021825/at2800sup1.cif

e-65-o1590-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021825/at2800Isup2.hkl

e-65-o1590-Isup2.hkl (189KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES