Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1990 Nov;86(5):1698–1706. doi: 10.1172/JCI114894

Evidence that diffusion limitation determines oxygen uptake kinetics during exercise in humans.

A Koike 1, K Wasserman 1, D K McKenzie 1, S Zanconato 1, D Weiler-Ravell 1
PMCID: PMC296922  PMID: 2122982

Abstract

To determine the role of arterial O2 content on the mechanism of muscle O2 utilization, we studied the effect of 2, 11, and 20% carboxyhemoglobin (COHb) on O2 uptake (VO2), and CO2 output (VCO2) kinetics in response to 6 min of constant moderate- and heavy-intensity cycle exercise in 10 subjects. Increased COHb did not affect resting heart rate, VO2 or VCO2. Also, the COHb did not affect the asymptotic VO2 in response to exercise. However, VO2 and VCO2 kinetics were affected differently. The time constant (TC) of VO2 significantly increased with increased COHb for both moderate and heavy work intensities. VO2 TC was positively correlated with blood lactate. In contrast, VCO2 TC was negatively correlated with increased COHb for the moderate but unchanged for the heavy work intensity. The gas exchange ratio reflected a smaller increase in CO2 stores and faster VCO2 kinetics relative to VO2 with increased COHb. These changes can be explained by compensatory cardiac output (heart rate) increase in response to reduced arterial O2 content. The selective slowing of VO2 kinetics, with decreased blood O2 content and increased cardiac output, suggests that O2 is diffusion limited at the levels of exercise studied.

Full text

PDF
1698

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaver W. L., Lamarra N., Wasserman K. Breath-by-breath measurement of true alveolar gas exchange. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1662–1675. doi: 10.1152/jappl.1981.51.6.1662. [DOI] [PubMed] [Google Scholar]
  2. Camus G., Atchou G., Bruckner J. C., Giezendanner D., di Prampero P. E. Slow upward drift of VO2 during constant-load cycling in untrained subjects. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):197–202. doi: 10.1007/BF00636626. [DOI] [PubMed] [Google Scholar]
  3. Casaburi R., Spitzer S., Haskell R., Wasserman K. Effect of altering heart rate on oxygen uptake at exercise onset. Chest. 1989 Jan;95(1):6–12. doi: 10.1378/chest.95.1.6. [DOI] [PubMed] [Google Scholar]
  4. Cerretelli P., Sikand R., Farhi L. E. Readjustments in cardiac output and gas exchange during onset of exercise and recovery. J Appl Physiol. 1966 Jul;21(4):1345–1350. doi: 10.1152/jappl.1966.21.4.1345. [DOI] [PubMed] [Google Scholar]
  5. Diamond L. B., Casaburi R., Wasserman K., Whipp B. J. Kinetics of gas exchange and ventilation in transitions from rest or prior exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977 Oct;43(4):704–708. doi: 10.1152/jappl.1977.43.4.704. [DOI] [PubMed] [Google Scholar]
  6. Ekblom B., Huot R. Response to submaximal and maximal exercise at different levels of carboxyhemoglobin. Acta Physiol Scand. 1972 Dec;86(4):474–482. doi: 10.1111/j.1748-1716.1972.tb05350.x. [DOI] [PubMed] [Google Scholar]
  7. Ekblom B., Huot R., Stein E. M., Thorstensson A. T. Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol. 1975 Jul;39(1):71–75. doi: 10.1152/jappl.1975.39.1.71. [DOI] [PubMed] [Google Scholar]
  8. Hagberg J. M., Mullin J. P., Nagle F. J. Oxygen consumption during constant-load exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978 Sep;45(3):381–384. doi: 10.1152/jappl.1978.45.3.381. [DOI] [PubMed] [Google Scholar]
  9. Hughson R. L., Smyth G. A. Slower Adaptation of VO2 to steady state of submaximal exercise with beta-blockade. Eur J Appl Physiol Occup Physiol. 1983;52(1):107–110. doi: 10.1007/BF00429035. [DOI] [PubMed] [Google Scholar]
  10. Karlsson H., Lindborg B., Linnarsson D. Time courses of pulmonary gas exchange and heart rate changes in supine exercise. Acta Physiol Scand. 1975 Nov;95(3):329–340. doi: 10.1111/j.1748-1716.1975.tb10057.x. [DOI] [PubMed] [Google Scholar]
  11. Linnarsson D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand Suppl. 1974;415:1–68. [PubMed] [Google Scholar]
  12. Nery L. E., Wasserman K., Andrews J. D., Huntsman D. J., Hansen J. E., Whipp B. J. Ventilatory and gas exchange kinetics during exercise in chronic airways obstruction. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1594–1602. doi: 10.1152/jappl.1982.53.6.1594. [DOI] [PubMed] [Google Scholar]
  13. Olsen C. An enzymatic fluorimetric micromethod for the determination of acetoacetate, -hydroxybutyrate, pyruvate and lactate. Clin Chim Acta. 1971 Jul;33(2):293–300. doi: 10.1016/0009-8981(71)90486-4. [DOI] [PubMed] [Google Scholar]
  14. Petersen E. S., Whipp B. J., Davis J. A., Huntsman D. J., Brown H. V., Wasserman K. Effects of beta-adrenergic blockade on ventilation and gas exchange during exercise in humans. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1306–1313. doi: 10.1152/jappl.1983.54.5.1306. [DOI] [PubMed] [Google Scholar]
  15. Pirnay F., Dujardin J., Deroanne R., Petit J. M. Muscular exercise during intoxication by carbon monoxide. J Appl Physiol. 1971 Oct;31(4):573–575. doi: 10.1152/jappl.1971.31.4.573. [DOI] [PubMed] [Google Scholar]
  16. Raven P. B., Drinkwater B. L., Ruhling R. O., Bolduan N., Taguchi S., Gliner J., Horvath S. M. Effect of carbon monoxide and peroxyacetyl nitrate on man's maximal aerobic capacity. J Appl Physiol. 1974 Mar;36(3):288–293. doi: 10.1152/jappl.1974.36.3.288. [DOI] [PubMed] [Google Scholar]
  17. Roston W. L., Whipp B. J., Davis J. A., Cunningham D. A., Effros R. M., Wasserman K. Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis. 1987 May;135(5):1080–1084. doi: 10.1164/arrd.1987.135.5.1080. [DOI] [PubMed] [Google Scholar]
  18. Sietsema K. E., Cooper D. M., Perloff J. K., Rosove M. H., Child J. S., Canobbio M. M., Whipp B. J., Wasserman K. Dynamics of oxygen uptake during exercise in adults with cyanotic congenital heart disease. Circulation. 1986 Jun;73(6):1137–1144. doi: 10.1161/01.cir.73.6.1137. [DOI] [PubMed] [Google Scholar]
  19. Sietsema K. E., Daly J. A., Wasserman K. Early dynamics of O2 uptake and heart rate as affected by exercise work rate. J Appl Physiol (1985) 1989 Dec;67(6):2535–2541. doi: 10.1152/jappl.1989.67.6.2535. [DOI] [PubMed] [Google Scholar]
  20. Springer C., Barstow T. J., Cooper D. M. Effect of hypoxia on ventilatory control during exercise in children and adults. Pediatr Res. 1989 Mar;25(3):285–290. doi: 10.1203/00006450-198903000-00016. [DOI] [PubMed] [Google Scholar]
  21. Vogel J. A., Gleser M. A. Effect of carbon monoxide on oxygen transport during exercise. J Appl Physiol. 1972 Feb;32(2):234–239. doi: 10.1152/jappl.1972.32.2.234. [DOI] [PubMed] [Google Scholar]
  22. Wasserman K. Coupling of external to internal respiration. Am Rev Respir Dis. 1984 Feb;129(2 Pt 2):S21–S24. doi: 10.1164/arrd.1984.129.2P2.S21. [DOI] [PubMed] [Google Scholar]
  23. Wasserman K. The Dickinson W. Richards lecture. New concepts in assessing cardiovascular function. Circulation. 1988 Oct;78(4):1060–1071. doi: 10.1161/01.cir.78.4.1060. [DOI] [PubMed] [Google Scholar]
  24. Whipp B. J., Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. 1972 Sep;33(3):351–356. doi: 10.1152/jappl.1972.33.3.351. [DOI] [PubMed] [Google Scholar]
  25. Wittenberg B. A., Wittenberg J. B. Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7503–7507. doi: 10.1073/pnas.84.21.7503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woodson R. D., Wills R. E., Lenfant C. Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jan;44(1):36–43. doi: 10.1152/jappl.1978.44.1.36. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES