Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 27;65(Pt 7):o1714. doi: 10.1107/S1600536809023745

Maleopimaric acid acetic acid solvate

Meng Zhang a, Yong-hong Zhou a,*, Xiao-xin Guo a, Li-hong Hu a
PMCID: PMC2969235  PMID: 21582965

Abstract

The title compound, C24H32O5·C2H4O2, is a derivative of abietic acid. The two fused and unbridged cyclo­hexane rings have chair conformations and the anhydride ring is planar. Of the other three six-membered rings, two have boat conformations and one has a twist-boat conformation. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background, see: McCoy (2000); Schweizer et al. (2003); Savluchinske-Feio et al. (2007). For the crystal structure of a similar compound, see: Pan et al. (2006). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1714-scheme1.jpg

Experimental

Crystal data

  • C24H32O5·C2H4O2

  • M r = 460.55

  • Orthorhombic, Inline graphic

  • a = 7.9469 (10) Å

  • b = 12.7755 (16) Å

  • c = 24.884 (3) Å

  • V = 2526.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.97, T max = 0.98

  • 13853 measured reflections

  • 2837 independent reflections

  • 2432 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.110

  • S = 1.04

  • 2837 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023745/wn2334sup1.cif

e-65-o1714-sup1.cif (26.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023745/wn2334Isup2.hkl

e-65-o1714-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4C⋯O6 0.93 1.70 2.617 (3) 169
O7—H7A⋯O5 0.93 1.76 2.681 (3) 171
C13—H13C⋯O5i 0.96 2.59 3.137 (5) 117
C26—H26B⋯O1ii 0.96 2.56 3.369 (4) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

supplementary crystallographic information

Comment

Rosin, a versatile natural resin, possesses a rare combination of many desirable properties and has consequently found innumerable industrial uses in a modified form or in conjunction with other natural or synthetic resins (McCoy, 2000). Abietic type resin acid is the major component of gum rosin, including abietic acid, neoabietic acid, levo-pimaric acid, palustric acid and is a high quality biomass resource in developing chiral new drugs (Schweizer et al., 2003). Abietic acid and its derivatives are readily available hydrophenanthrene compounds which form useful starting materials for the design and synthesis of industrially and physiologically important products (Savluchinske-Feio et al.,2007).

The crystal structure of a similar compound, also a derivative of maleopimaric acid, has already been published (Pan et al., 2006). The molecular structure of the title compound, is shown in Fig. 1. The asymmetric unit consists of two molecules, viz. maleopimaric anhydride and acetic acid. The cyclohexane rings C5, C6, C14–C16, C21 and C16—C21 have typical chair forms. The cyclohexane ring C2–C7 has a slightly distorted twist-boat conformation; the other two six-membered rings adopt boat conformations. The configuration about the C9═C10 bond is Z (Fig. 1), with the H atom and the isopropyl group cis with respect to each other. The bond lengths (Allen et al., 1987) and bond angles exhibit normal values. In the crystal structure, the molecules are linked (Fig.2) by O—H···O and C—H···O intermolecular hydrogen bonds, also by van der Waals forces.

Experimental

Rosin (10.0 g), acetic acid (7 ml), and maleic anhydride (3.0 g) were put into a 50-ml three-necked flask and magnetically stirred; the mixture was stirred for 20 min with power 450w. The solution was put into 5 ml glacial acetic acid and cooled, washed with hot water (10 ml), dried (MgSO4), and concentrated to dryness. Recrystallization from ethanol afforded the adduct (7.5 g, 50%).

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq, but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms,with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C); O—H = 0.93 Å and Uiso(H) = 1.2Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C24H32O5·C2H4O2 Dx = 1.211 Mg m3
Mr = 460.55 Melting point: 498 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3636 reflections
a = 7.9469 (10) Å θ = 2.3–23.2°
b = 12.7755 (16) Å µ = 0.09 mm1
c = 24.884 (3) Å T = 291 K
V = 2526.3 (5) Å3 Block, colorless
Z = 4 0.30 × 0.26 × 0.24 mm
F(000) = 992

Data collection

Bruker SMART APEX CCD diffractometer 2837 independent reflections
Radiation source: sealed tube 2432 reflections with I > 2σ(I)
graphite Rint = 0.059
φ and ω scans θmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→8
Tmin = 0.97, Tmax = 0.98 k = −15→15
13853 measured reflections l = −27→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.05P)2 + 0.55P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2837 reflections Δρmax = 0.19 e Å3
304 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0076 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The Friedel pairs have been merged in the absence of anomalous scattering.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5002 (4) −0.1408 (3) 0.21013 (13) 0.0419 (7)
C2 0.5980 (4) −0.0411 (2) 0.20070 (12) 0.0398 (7)
H2 0.6794 −0.0301 0.2297 0.048*
C3 0.6887 (4) −0.0420 (2) 0.14559 (13) 0.0417 (7)
H3 0.7696 −0.0998 0.1434 0.050*
C4 0.7802 (4) 0.0670 (2) 0.14272 (13) 0.0426 (7)
H4A 0.8616 0.0723 0.1716 0.051*
H4B 0.8400 0.0730 0.1089 0.051*
C5 0.6514 (4) 0.1559 (2) 0.14754 (14) 0.0411 (7)
H5 0.6683 0.1867 0.1832 0.049*
C6 0.4713 (4) 0.1086 (2) 0.14794 (13) 0.0414 (7)
C7 0.4657 (4) 0.0448 (2) 0.20125 (12) 0.0409 (7)
H7 0.4851 0.0916 0.2318 0.049*
C8 0.3020 (4) −0.0147 (3) 0.20917 (13) 0.0442 (8)
C9 0.4523 (4) 0.0321 (3) 0.10233 (12) 0.0429 (7)
H9 0.3687 0.0390 0.0764 0.052*
C10 0.5648 (4) −0.0472 (3) 0.10145 (12) 0.0453 (8)
C11 0.5732 (5) −0.1285 (3) 0.05890 (15) 0.0552 (10)
H11 0.6773 −0.1203 0.0383 0.066*
C12 0.4230 (5) −0.1334 (3) 0.02054 (15) 0.0553 (10)
H12A 0.3219 −0.1455 0.0407 0.083*
H12B 0.4391 −0.1895 −0.0046 0.083*
H12C 0.4137 −0.0683 0.0015 0.083*
C13 0.5604 (5) −0.2392 (3) 0.07953 (13) 0.0503 (9)
H13A 0.6437 −0.2503 0.1069 0.075*
H13B 0.5788 −0.2873 0.0505 0.075*
H13C 0.4504 −0.2505 0.0944 0.075*
C14 0.3351 (4) 0.1953 (2) 0.14874 (13) 0.0434 (7)
H14A 0.2267 0.1642 0.1406 0.052*
H14B 0.3287 0.2247 0.1846 0.052*
C15 0.3695 (4) 0.2827 (2) 0.10897 (13) 0.0427 (8)
H15A 0.3630 0.2555 0.0726 0.051*
H15B 0.2849 0.3369 0.1128 0.051*
C16 0.5419 (4) 0.3288 (2) 0.11854 (13) 0.0409 (7)
H16 0.5485 0.3405 0.1574 0.049*
C17 0.5691 (4) 0.4405 (3) 0.09213 (12) 0.0408 (7)
C18 0.7484 (4) 0.4797 (3) 0.10755 (14) 0.0442 (8)
H18A 0.7707 0.5453 0.0893 0.053*
H18B 0.7528 0.4925 0.1459 0.053*
C19 0.8818 (4) 0.4017 (3) 0.09266 (15) 0.0491 (9)
H19A 0.9912 0.4293 0.1026 0.059*
H19B 0.8809 0.3914 0.0540 0.059*
C20 0.8550 (4) 0.2952 (3) 0.12078 (14) 0.0450 (8)
H20A 0.8616 0.3047 0.1594 0.054*
H20B 0.9437 0.2474 0.1102 0.054*
C21 0.6810 (4) 0.2471 (2) 0.10598 (12) 0.0405 (7)
C22 0.6830 (4) 0.2061 (3) 0.04687 (12) 0.0429 (7)
H22A 0.5701 0.1906 0.0357 0.064*
H22B 0.7501 0.1437 0.0449 0.064*
H22C 0.7300 0.2587 0.0238 0.064*
C23 0.5378 (5) 0.4443 (3) 0.03186 (12) 0.0445 (7)
H23A 0.4192 0.4508 0.0252 0.067*
H23B 0.5789 0.3812 0.0156 0.067*
H23C 0.5955 0.5034 0.0168 0.067*
C24 0.4419 (4) 0.5116 (3) 0.11930 (13) 0.0426 (7)
C25 0.1024 (4) 0.6778 (3) 0.18987 (14) 0.0460 (8)
C26 −0.0272 (4) 0.7410 (3) 0.21888 (13) 0.0484 (8)
H26A −0.0330 0.7187 0.2557 0.073*
H26B −0.1348 0.7313 0.2021 0.073*
H26C 0.0031 0.8137 0.2175 0.073*
O1 0.5518 (3) −0.22935 (16) 0.21417 (9) 0.0463 (6)
O2 0.3332 (3) −0.12062 (18) 0.21447 (10) 0.0472 (6)
O3 0.1594 (3) 0.01506 (17) 0.21128 (9) 0.0453 (5)
O4 0.4493 (3) 0.51827 (17) 0.17031 (8) 0.0455 (6)
H4C 0.3728 0.5602 0.1887 0.055*
O5 0.3379 (3) 0.55953 (19) 0.09249 (8) 0.0472 (6)
O6 0.2043 (3) 0.62457 (17) 0.21453 (9) 0.0465 (6)
O7 0.1034 (3) 0.68154 (18) 0.13804 (9) 0.0462 (6)
H7A 0.1831 0.6430 0.1191 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0453 (18) 0.0411 (16) 0.0395 (17) 0.0089 (14) −0.0018 (14) 0.0098 (14)
C2 0.0398 (17) 0.0409 (17) 0.0389 (16) 0.0087 (14) 0.0007 (13) −0.0023 (13)
C3 0.0443 (17) 0.0377 (15) 0.0431 (17) 0.0077 (14) 0.0041 (15) 0.0005 (13)
C4 0.0427 (17) 0.0423 (17) 0.0428 (17) 0.0049 (14) 0.0031 (14) 0.0012 (14)
C5 0.0417 (17) 0.0386 (16) 0.0430 (17) 0.0036 (13) 0.0036 (15) −0.0003 (13)
C6 0.0400 (16) 0.0405 (16) 0.0437 (17) 0.0004 (13) −0.0006 (15) −0.0001 (14)
C7 0.0403 (17) 0.0403 (16) 0.0420 (17) 0.0049 (14) −0.0029 (14) −0.0019 (13)
C8 0.0434 (18) 0.0452 (18) 0.0441 (18) 0.0096 (15) 0.0095 (15) 0.0081 (14)
C9 0.0470 (17) 0.0430 (17) 0.0388 (16) 0.0055 (15) −0.0113 (15) −0.0024 (13)
C10 0.0439 (18) 0.0488 (19) 0.0433 (17) 0.0118 (15) 0.0043 (15) −0.0102 (14)
C11 0.067 (2) 0.0469 (19) 0.051 (2) 0.0168 (19) −0.0152 (19) −0.0133 (16)
C12 0.059 (2) 0.050 (2) 0.057 (2) 0.0163 (18) −0.0149 (19) −0.0216 (17)
C13 0.0488 (19) 0.056 (2) 0.0461 (19) −0.0147 (17) 0.0107 (16) −0.0149 (15)
C14 0.0414 (17) 0.0470 (17) 0.0418 (17) 0.0044 (15) −0.0055 (15) 0.0019 (14)
C15 0.0506 (19) 0.0365 (16) 0.0411 (17) 0.0070 (15) −0.0127 (15) −0.0028 (13)
C16 0.0417 (17) 0.0392 (16) 0.0418 (17) 0.0102 (14) 0.0007 (14) 0.0027 (13)
C17 0.0387 (16) 0.0441 (17) 0.0397 (15) 0.0031 (14) 0.0028 (14) 0.0037 (14)
C18 0.0451 (17) 0.0406 (18) 0.0469 (18) −0.0079 (15) 0.0056 (15) 0.0080 (14)
C19 0.0444 (18) 0.051 (2) 0.0522 (19) −0.0018 (15) 0.0170 (16) 0.0135 (16)
C20 0.0445 (18) 0.0445 (18) 0.0459 (18) −0.0015 (15) 0.0029 (15) 0.0114 (15)
C21 0.0416 (17) 0.0394 (16) 0.0406 (16) 0.0058 (14) 0.0125 (14) 0.0013 (13)
C22 0.0426 (17) 0.0441 (17) 0.0420 (17) 0.0118 (15) 0.0126 (14) −0.0080 (14)
C23 0.0463 (18) 0.0417 (17) 0.0456 (17) 0.0112 (15) 0.0012 (15) 0.0056 (14)
C24 0.0422 (17) 0.0411 (17) 0.0443 (17) 0.0118 (15) −0.0131 (14) −0.0023 (13)
C25 0.0419 (18) 0.0466 (18) 0.0496 (19) 0.0143 (15) −0.0064 (15) 0.0150 (15)
C26 0.0450 (18) 0.0536 (19) 0.0468 (18) 0.0114 (16) 0.0139 (16) 0.0172 (16)
O1 0.0498 (13) 0.0413 (12) 0.0480 (12) 0.0178 (11) 0.0177 (12) 0.0161 (10)
O2 0.0437 (13) 0.0468 (12) 0.0511 (13) 0.0058 (11) 0.0054 (12) 0.0177 (10)
O3 0.0417 (13) 0.0465 (12) 0.0477 (12) 0.0104 (11) 0.0100 (11) 0.0107 (10)
O4 0.0480 (13) 0.0462 (12) 0.0422 (12) 0.0174 (11) −0.0129 (11) −0.0074 (9)
O5 0.0502 (13) 0.0539 (14) 0.0376 (11) 0.0186 (11) −0.0092 (11) 0.0108 (10)
O6 0.0465 (13) 0.0495 (13) 0.0436 (12) 0.0148 (11) −0.0067 (11) 0.0144 (10)
O7 0.0442 (13) 0.0469 (12) 0.0475 (13) 0.0169 (10) −0.0119 (10) 0.0153 (11)

Geometric parameters (Å, °)

C1—O1 1.207 (4) C14—H14B 0.9700
C1—O2 1.356 (4) C15—C16 1.510 (5)
C1—C2 1.511 (5) C15—H15A 0.9700
C2—C7 1.520 (4) C15—H15B 0.9700
C2—C3 1.550 (4) C16—C21 1.552 (4)
C2—H2 0.9800 C16—C17 1.586 (4)
C3—C10 1.477 (5) C16—H16 0.9800
C3—C4 1.573 (4) C17—C24 1.518 (5)
C3—H3 0.9800 C17—C23 1.521 (4)
C4—C5 1.533 (4) C17—C18 1.558 (5)
C4—H4A 0.9700 C18—C19 1.501 (5)
C4—H4B 0.9700 C18—H18A 0.9700
C5—C6 1.553 (4) C18—H18B 0.9700
C5—C21 1.576 (4) C19—C20 1.544 (4)
C5—H5 0.9800 C19—H19A 0.9700
C6—C9 1.505 (4) C19—H19B 0.9700
C6—C14 1.549 (4) C20—C21 1.557 (5)
C6—C7 1.557 (4) C20—H20A 0.9700
C7—C8 1.519 (5) C20—H20B 0.9700
C7—H7 0.9800 C21—C22 1.561 (4)
C8—O3 1.197 (4) C22—H22A 0.9600
C8—O2 1.382 (4) C22—H22B 0.9600
C9—C10 1.351 (5) C22—H22C 0.9600
C9—H9 0.9300 C23—H23A 0.9600
C10—C11 1.485 (4) C23—H23B 0.9600
C11—C13 1.507 (5) C23—H23C 0.9600
C11—C12 1.529 (5) C24—O5 1.226 (4)
C11—H11 0.9800 C24—O4 1.274 (4)
C12—H12A 0.9600 C25—O6 1.223 (4)
C12—H12B 0.9600 C25—O7 1.291 (4)
C12—H12C 0.9600 C25—C26 1.494 (5)
C13—H13A 0.9600 C26—H26A 0.9600
C13—H13B 0.9600 C26—H26B 0.9600
C13—H13C 0.9600 C26—H26C 0.9600
C14—C15 1.517 (4) O4—H4C 0.9300
C14—H14A 0.9700 O7—H7A 0.9300
O1—C1—O2 120.3 (3) H14A—C14—H14B 107.8
O1—C1—C2 128.9 (3) C16—C15—C14 110.3 (3)
O2—C1—C2 110.8 (3) C16—C15—H15A 109.6
C1—C2—C7 104.6 (3) C14—C15—H15A 109.6
C1—C2—C3 111.8 (3) C16—C15—H15B 109.6
C7—C2—C3 109.6 (2) C14—C15—H15B 109.6
C1—C2—H2 110.3 H15A—C15—H15B 108.1
C7—C2—H2 110.3 C15—C16—C21 110.7 (3)
C3—C2—H2 110.3 C15—C16—C17 114.1 (3)
C10—C3—C2 110.4 (3) C21—C16—C17 115.1 (3)
C10—C3—C4 108.3 (3) C15—C16—H16 105.3
C2—C3—C4 104.4 (3) C21—C16—H16 105.3
C10—C3—H3 111.2 C17—C16—H16 105.3
C2—C3—H3 111.2 C24—C17—C23 108.1 (3)
C4—C3—H3 111.2 C24—C17—C18 107.9 (3)
C5—C4—C3 110.1 (3) C23—C17—C18 112.5 (3)
C5—C4—H4A 109.6 C24—C17—C16 105.3 (3)
C3—C4—H4A 109.6 C23—C17—C16 114.5 (3)
C5—C4—H4B 109.6 C18—C17—C16 108.2 (3)
C3—C4—H4B 109.6 C19—C18—C17 111.8 (3)
H4A—C4—H4B 108.2 C19—C18—H18A 109.2
C4—C5—C6 109.1 (2) C17—C18—H18A 109.2
C4—C5—C21 113.4 (3) C19—C18—H18B 109.2
C6—C5—C21 115.4 (3) C17—C18—H18B 109.2
C4—C5—H5 106.1 H18A—C18—H18B 107.9
C6—C5—H5 106.1 C18—C19—C20 112.0 (3)
C21—C5—H5 106.1 C18—C19—H19A 109.2
C9—C6—C14 113.8 (3) C20—C19—H19A 109.2
C9—C6—C5 109.9 (3) C18—C19—H19B 109.2
C14—C6—C5 111.5 (2) C20—C19—H19B 109.2
C9—C6—C7 107.5 (3) H19A—C19—H19B 107.9
C14—C6—C7 110.1 (3) C19—C20—C21 111.3 (3)
C5—C6—C7 103.6 (3) C19—C20—H20A 109.4
C8—C7—C2 103.4 (2) C21—C20—H20A 109.4
C8—C7—C6 113.4 (3) C19—C20—H20B 109.4
C2—C7—C6 110.5 (3) C21—C20—H20B 109.4
C8—C7—H7 109.8 H20A—C20—H20B 108.0
C2—C7—H7 109.8 C16—C21—C20 108.6 (3)
C6—C7—H7 109.8 C16—C21—C22 115.0 (3)
O3—C8—O2 118.4 (3) C20—C21—C22 110.3 (3)
O3—C8—C7 131.1 (3) C16—C21—C5 105.0 (2)
O2—C8—C7 110.4 (3) C20—C21—C5 105.6 (3)
C10—C9—C6 115.6 (3) C22—C21—C5 111.8 (3)
C10—C9—H9 122.2 C21—C22—H22A 109.5
C6—C9—H9 122.2 C21—C22—H22B 109.5
C9—C10—C3 113.3 (3) H22A—C22—H22B 109.5
C9—C10—C11 124.5 (3) C21—C22—H22C 109.5
C3—C10—C11 122.1 (3) H22A—C22—H22C 109.5
C10—C11—C13 114.2 (3) H22B—C22—H22C 109.5
C10—C11—C12 116.0 (3) C17—C23—H23A 109.5
C13—C11—C12 97.0 (3) C17—C23—H23B 109.5
C10—C11—H11 109.7 H23A—C23—H23B 109.5
C13—C11—H11 109.7 C17—C23—H23C 109.5
C12—C11—H11 109.7 H23A—C23—H23C 109.5
C11—C12—H12A 109.5 H23B—C23—H23C 109.5
C11—C12—H12B 109.5 O5—C24—O4 122.7 (3)
H12A—C12—H12B 109.5 O5—C24—C17 120.4 (3)
C11—C12—H12C 109.5 O4—C24—C17 116.9 (3)
H12A—C12—H12C 109.5 O6—C25—O7 121.2 (3)
H12B—C12—H12C 109.5 O6—C25—C26 121.0 (3)
C11—C13—H13A 109.5 O7—C25—C26 117.9 (3)
C11—C13—H13B 109.5 C25—C26—H26A 109.5
H13A—C13—H13B 109.5 C25—C26—H26B 109.5
C11—C13—H13C 109.5 H26A—C26—H26B 109.5
H13A—C13—H13C 109.5 C25—C26—H26C 109.5
H13B—C13—H13C 109.5 H26A—C26—H26C 109.5
C15—C14—C6 113.1 (3) H26B—C26—H26C 109.5
C15—C14—H14A 109.0 C1—O2—C8 110.7 (3)
C6—C14—H14A 109.0 C24—O4—H4C 119.9
C15—C14—H14B 109.0 C25—O7—H7A 119.5
C6—C14—H14B 109.0
O1—C1—C2—C7 −178.2 (3) C3—C10—C11—C12 171.8 (3)
O2—C1—C2—C7 1.4 (4) C9—C6—C14—C15 −79.4 (3)
O1—C1—C2—C3 63.3 (5) C5—C6—C14—C15 45.5 (4)
O2—C1—C2—C3 −117.1 (3) C7—C6—C14—C15 159.9 (3)
C1—C2—C3—C10 63.1 (3) C6—C14—C15—C16 −55.4 (4)
C7—C2—C3—C10 −52.4 (3) C14—C15—C16—C21 66.0 (3)
C1—C2—C3—C4 179.3 (3) C14—C15—C16—C17 −162.3 (3)
C7—C2—C3—C4 63.8 (3) C15—C16—C17—C24 62.4 (3)
C10—C3—C4—C5 58.8 (3) C21—C16—C17—C24 −168.1 (3)
C2—C3—C4—C5 −58.8 (3) C15—C16—C17—C23 −56.2 (4)
C3—C4—C5—C6 −5.6 (4) C21—C16—C17—C23 73.3 (4)
C3—C4—C5—C21 −135.8 (3) C15—C16—C17—C18 177.5 (3)
C4—C5—C6—C9 −48.9 (3) C21—C16—C17—C18 −53.0 (3)
C21—C5—C6—C9 80.1 (3) C24—C17—C18—C19 167.7 (3)
C4—C5—C6—C14 −176.0 (3) C23—C17—C18—C19 −73.2 (4)
C21—C5—C6—C14 −47.0 (4) C16—C17—C18—C19 54.3 (3)
C4—C5—C6—C7 65.7 (3) C17—C18—C19—C20 −59.5 (4)
C21—C5—C6—C7 −165.3 (3) C18—C19—C20—C21 59.2 (4)
C1—C2—C7—C8 −1.8 (3) C15—C16—C21—C20 −175.5 (3)
C3—C2—C7—C8 118.1 (3) C17—C16—C21—C20 53.2 (3)
C1—C2—C7—C6 −123.5 (3) C15—C16—C21—C22 60.3 (4)
C3—C2—C7—C6 −3.5 (4) C17—C16—C21—C22 −70.9 (4)
C9—C6—C7—C8 −60.5 (3) C15—C16—C21—C5 −62.9 (3)
C14—C6—C7—C8 64.0 (3) C17—C16—C21—C5 165.8 (3)
C5—C6—C7—C8 −176.7 (2) C19—C20—C21—C16 −54.0 (3)
C9—C6—C7—C2 55.1 (3) C19—C20—C21—C22 72.8 (3)
C14—C6—C7—C2 179.5 (3) C19—C20—C21—C5 −166.2 (3)
C5—C6—C7—C2 −61.2 (3) C4—C5—C21—C16 −178.6 (3)
C2—C7—C8—O3 −178.1 (4) C6—C5—C21—C16 54.4 (3)
C6—C7—C8—O3 −58.4 (5) C4—C5—C21—C20 −63.9 (3)
C2—C7—C8—O2 1.8 (3) C6—C5—C21—C20 169.2 (3)
C6—C7—C8—O2 121.5 (3) C4—C5—C21—C22 56.1 (4)
C14—C6—C9—C10 −177.5 (3) C6—C5—C21—C22 −70.9 (3)
C5—C6—C9—C10 56.7 (4) C23—C17—C24—O5 0.2 (4)
C7—C6—C9—C10 −55.3 (4) C18—C17—C24—O5 122.0 (3)
C6—C9—C10—C3 −1.2 (4) C16—C17—C24—O5 −122.7 (3)
C6—C9—C10—C11 −177.3 (3) C23—C17—C24—O4 −180.0 (3)
C2—C3—C10—C9 57.3 (4) C18—C17—C24—O4 −58.1 (4)
C4—C3—C10—C9 −56.4 (4) C16—C17—C24—O4 57.2 (4)
C2—C3—C10—C11 −126.5 (3) O1—C1—O2—C8 179.4 (3)
C4—C3—C10—C11 119.8 (4) C2—C1—O2—C8 −0.2 (4)
C9—C10—C11—C13 −124.0 (4) O3—C8—O2—C1 178.9 (3)
C3—C10—C11—C13 60.1 (5) C7—C8—O2—C1 −1.1 (4)
C9—C10—C11—C12 −12.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4C···O6 0.93 1.70 2.617 (3) 169
O7—H7A···O5 0.93 1.76 2.681 (3) 171
C13—H13C···O5i 0.96 2.59 3.137 (5) 117
C26—H26B···O1ii 0.96 2.56 3.369 (4) 142

Symmetry codes: (i) x, y−1, z; (ii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2334).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. McCoy, M. (2000). Chem. Eng. News, 78, 13–15.
  4. Pan, Y.-M., Yang, L., Wang, H.-S., Zhao, Z.-C. & Zhang, Y. (2006). Acta Cryst. E62, o5701–o5703.
  5. Savluchinske-Feio, S., Nunes, L., Pereira, P. T., Silva, A. M., Roseiro, J. C., Gigante, B. & Curto, M. J. M. (2007). J. Microbiol. Methods, 70, 465–470. [DOI] [PubMed]
  6. Schweizer, R. A. S., Atanasoc, A. G., Frey, B. M. & Odermatt, A. (2003). Mol. Cell. Endocrinol.212, 41–49. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809023745/wn2334sup1.cif

e-65-o1714-sup1.cif (26.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809023745/wn2334Isup2.hkl

e-65-o1714-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES