Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 20;65(Pt 7):o1619–o1620. doi: 10.1107/S1600536809022521

(E)-1-(4-Fluoro­phen­yl)ethan-1-one semicarbazone

Hoong-Kun Fun a,*,, Chin Sing Yeap a,§, Mahesh Padaki b, Shridhar Malladi b, Arun M Isloor b
PMCID: PMC2969237  PMID: 21582889

Abstract

In the title compound, C9H10FN3O, the semicarbazone group is nearly planar, with the maximum deviation of 0.044 (1) Å for one of the N atoms. The mean plane of semicarbazone group forms a dihedral angle of 30.94 (4)° with the benzene ring. The mol­ecules are linked into a supra­molecular chain by N—H⋯O hydrogen bonds formed along the c axis. The crystal structure is further stabilized by weak inter­molucular C—H⋯π inter­actions; the closest C⋯Cg contact is 3.6505 (11) Å.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of semicarbazone derivatives, see: Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Warren et al. (1977); Yogeeswari et al. (2004). For the preparation of the compound, see: Furniss et al. (1978). For related structures, see: Fun et al. (2009a ,b ). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1619-scheme1.jpg

Experimental

Crystal data

  • C9H10FN3O

  • M r = 195.20

  • Monoclinic, Inline graphic

  • a = 18.8207 (3) Å

  • b = 6.6387 (1) Å

  • c = 7.3074 (1) Å

  • β = 95.887 (1)°

  • V = 908.21 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.876, T max = 0.991

  • 17523 measured reflections

  • 3998 independent reflections

  • 2766 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.151

  • S = 1.07

  • 3998 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022521/tk2477sup1.cif

e-65-o1619-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022521/tk2477Isup2.hkl

e-65-o1619-Isup2.hkl (196KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.96 (2) 1.94 (2) 2.8998 (11) 179.2 (18)
N3—H2N3⋯O1ii 0.82 (2) 2.07 (2) 2.8901 (12) 176 (2)
C2—H2ACg1iii 0.989 (17) 2.927 (18) 3.7250 (12) 138.5 (12)
C5—H5ACg1iv 0.976 (14) 2.825 (13) 3.6505 (11) 142.8 (10)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 is the centroid of C1–C6 benzene ring.

Acknowledgments

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

supplementary crystallographic information

Comment

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. Semicarbazones find a large number of applications in the field of synthetic chemistry, such as in medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002), and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were found to possess anti-convulsant activity (Yogeeswari et al., 2004). We hereby report the crystal structure of a semicarbazone of commercial importance, (I).

The bond lengths and angles for (I), Fig. 1, are comparable to those found in related structures (Fun et al., 2009a, b). A maximum deviation of 0.044 (1) Å for atom N2 from the mean plane formed by atoms O1, N1, N2, N3, C6, C7, C8 and C9, indicates that the semicarbazone group is nearly planar. This mean plane makes a dihedral angle of 30.94 (4)° with the C1–C6 benzene ring. The molecules are linked into one-dimensional chains by intermolecular N—H···O hydrogen bonds along the c axis (Fig. 2); these hydrogen bonding interactions generate R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is stabilized by weak intermolecular C—H···π interactions (Table 1).

Experimental

Semicarbazide hydrochloride (0.86 g, 7.70 mmol) and freshly recrystallized sodium acetate (0.77 g, 9.40 mmol) were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, 4-fluoroacetophenone (1.00 g, 7.23 mmol) was added and the mixture was shaken well. A little alcohol was added to dissolve the turbidity. The mixture was shaken for a further 10 minutes and allowed to stand. The title compound (I) crystallizes on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from ethanol. Yield: 1.34 g (95%). M.p. 485-486 K.

Refinement

All hydrogen atoms were located from the difference Fourier map and refined freely, N—H = 0.820 (19) - 0.957 (19) Å and C–H = 0.945 (19) - 1.005 (18) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the b axis, showing the molecules are linked along the c axis. Hydrogen bonds are shown in as dashed lines.

Crystal data

C9H10FN3O F(000) = 408
Mr = 195.20 Dx = 1.428 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5018 reflections
a = 18.8207 (3) Å θ = 4.2–38.8°
b = 6.6387 (1) Å µ = 0.11 mm1
c = 7.3074 (1) Å T = 100 K
β = 95.887 (1)° Needle, colourless
V = 908.21 (2) Å3 0.30 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3998 independent reflections
Radiation source: fine-focus sealed tube 2766 reflections with I > 2σ(I)
graphite Rint = 0.033
φ and ω scans θmax = 35.0°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −29→30
Tmin = 0.876, Tmax = 0.991 k = −10→10
17523 measured reflections l = −7→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.078P)2 + 0.1557P] where P = (Fo2 + 2Fc2)/3
3998 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.50077 (4) 0.48694 (11) 0.79001 (10) 0.02274 (17)
O1 −0.01336 (4) 0.50372 (12) 0.73484 (10) 0.01547 (16)
N1 0.16753 (5) 0.50702 (12) 0.66798 (11) 0.01257 (16)
N2 0.09495 (5) 0.50670 (13) 0.62389 (11) 0.01339 (17)
N3 0.08724 (5) 0.50728 (15) 0.93755 (12) 0.01734 (19)
C1 0.31185 (5) 0.59520 (16) 0.76477 (14) 0.01595 (19)
C2 0.38374 (6) 0.59368 (17) 0.82935 (14) 0.0178 (2)
C3 0.43028 (5) 0.49203 (16) 0.72738 (15) 0.01591 (19)
C4 0.40812 (6) 0.39453 (17) 0.56461 (14) 0.0177 (2)
C5 0.33579 (5) 0.39948 (17) 0.50051 (13) 0.01569 (19)
C6 0.28652 (5) 0.49812 (14) 0.60026 (13) 0.01153 (17)
C7 0.20888 (5) 0.49673 (14) 0.53803 (13) 0.01158 (17)
C8 0.05269 (5) 0.50588 (15) 0.76711 (13) 0.01249 (18)
C9 0.18228 (6) 0.48336 (16) 0.33718 (13) 0.01471 (19)
H1A 0.2783 (8) 0.667 (2) 0.8362 (19) 0.023 (4)*
H2A 0.4017 (8) 0.666 (3) 0.943 (2) 0.031 (4)*
H4A 0.4422 (7) 0.324 (2) 0.4966 (19) 0.021 (3)*
H5A 0.3214 (7) 0.328 (2) 0.3860 (19) 0.017 (3)*
H9A 0.1565 (9) 0.602 (3) 0.303 (2) 0.035 (4)*
H9B 0.1536 (9) 0.364 (3) 0.317 (2) 0.037 (5)*
H9C 0.2216 (10) 0.480 (2) 0.254 (2) 0.031 (5)*
H1N2 0.0681 (10) 0.502 (2) 0.505 (3) 0.029 (4)*
H1N3 0.1329 (10) 0.506 (2) 0.947 (2) 0.025 (4)*
H2N3 0.0643 (10) 0.505 (2) 1.027 (3) 0.030 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0096 (3) 0.0346 (4) 0.0230 (3) 0.0012 (2) −0.0031 (2) −0.0014 (3)
O1 0.0103 (3) 0.0256 (4) 0.0103 (3) −0.0002 (3) 0.0004 (2) −0.0005 (3)
N1 0.0098 (3) 0.0167 (4) 0.0110 (3) 0.0002 (3) 0.0002 (3) 0.0005 (3)
N2 0.0101 (3) 0.0220 (4) 0.0080 (3) −0.0003 (3) 0.0004 (3) 0.0000 (3)
N3 0.0120 (4) 0.0317 (5) 0.0082 (3) −0.0002 (3) 0.0003 (3) −0.0006 (3)
C1 0.0137 (4) 0.0188 (5) 0.0150 (4) 0.0013 (4) −0.0002 (3) −0.0034 (3)
C2 0.0152 (4) 0.0214 (5) 0.0161 (4) 0.0001 (4) −0.0022 (3) −0.0036 (4)
C3 0.0097 (4) 0.0205 (5) 0.0169 (4) 0.0002 (3) −0.0017 (3) 0.0026 (3)
C4 0.0131 (4) 0.0230 (5) 0.0173 (4) 0.0029 (4) 0.0021 (3) −0.0016 (4)
C5 0.0134 (4) 0.0202 (5) 0.0133 (4) 0.0012 (3) 0.0006 (3) −0.0024 (3)
C6 0.0107 (4) 0.0134 (4) 0.0103 (4) 0.0005 (3) 0.0002 (3) 0.0007 (3)
C7 0.0116 (4) 0.0128 (4) 0.0102 (4) 0.0005 (3) 0.0003 (3) −0.0006 (3)
C8 0.0114 (4) 0.0167 (4) 0.0094 (4) 0.0000 (3) 0.0009 (3) −0.0005 (3)
C9 0.0122 (4) 0.0211 (5) 0.0105 (4) −0.0010 (4) −0.0003 (3) −0.0006 (3)

Geometric parameters (Å, °)

F1—C3 1.3587 (12) C2—C3 1.3826 (15)
O1—C8 1.2413 (12) C2—H2A 0.989 (17)
N1—C7 1.2900 (13) C3—C4 1.3805 (15)
N1—N2 1.3709 (12) C4—C5 1.3939 (14)
N2—C8 1.3779 (13) C4—H4A 0.971 (14)
N2—H1N2 0.957 (19) C5—C6 1.3995 (14)
N3—C8 1.3446 (13) C5—H5A 0.976 (14)
N3—H1N3 0.856 (18) C6—C7 1.4851 (13)
N3—H2N3 0.820 (19) C7—C9 1.5040 (13)
C1—C2 1.3866 (14) C9—H9A 0.945 (19)
C1—C6 1.4037 (14) C9—H9B 0.964 (18)
C1—H1A 0.983 (14) C9—H9C 1.005 (18)
C7—N1—N2 119.27 (8) C4—C5—C6 120.83 (9)
N1—N2—C8 117.41 (8) C4—C5—H5A 116.8 (8)
N1—N2—H1N2 129.3 (10) C6—C5—H5A 122.3 (8)
C8—N2—H1N2 113.3 (10) C5—C6—C1 118.42 (9)
C8—N3—H1N3 117.6 (12) C5—C6—C7 121.42 (8)
C8—N3—H2N3 119.6 (13) C1—C6—C7 120.14 (8)
H1N3—N3—H2N3 122.7 (18) N1—C7—C6 115.04 (8)
C2—C1—C6 121.47 (9) N1—C7—C9 123.77 (9)
C2—C1—H1A 118.7 (8) C6—C7—C9 121.19 (8)
C6—C1—H1A 119.8 (8) O1—C8—N3 123.76 (9)
C3—C2—C1 118.04 (9) O1—C8—N2 120.04 (9)
C3—C2—H2A 120.6 (9) N3—C8—N2 116.20 (9)
C1—C2—H2A 121.4 (9) C7—C9—H9A 108.5 (11)
F1—C3—C4 118.48 (9) C7—C9—H9B 108.7 (10)
F1—C3—C2 118.77 (9) H9A—C9—H9B 112.6 (16)
C4—C3—C2 122.75 (10) C7—C9—H9C 113.6 (11)
C3—C4—C5 118.48 (10) H9A—C9—H9C 104.5 (14)
C3—C4—H4A 120.7 (8) H9B—C9—H9C 109.0 (14)
C5—C4—H4A 120.8 (8)
C7—N1—N2—C8 176.26 (9) C2—C1—C6—C7 177.96 (9)
C6—C1—C2—C3 −0.43 (16) N2—N1—C7—C6 179.99 (8)
C1—C2—C3—F1 −179.17 (10) N2—N1—C7—C9 −0.23 (14)
C1—C2—C3—C4 0.56 (17) C5—C6—C7—N1 150.01 (10)
F1—C3—C4—C5 179.90 (9) C1—C6—C7—N1 −28.31 (13)
C2—C3—C4—C5 0.17 (17) C5—C6—C7—C9 −29.77 (14)
C3—C4—C5—C6 −1.05 (16) C1—C6—C7—C9 151.91 (10)
C4—C5—C6—C1 1.16 (15) N1—N2—C8—O1 −179.35 (9)
C4—C5—C6—C7 −177.18 (9) N1—N2—C8—N3 0.57 (13)
C2—C1—C6—C5 −0.41 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.96 (2) 1.94 (2) 2.8998 (11) 179.2 (18)
N3—H2N3···O1ii 0.82 (2) 2.07 (2) 2.8901 (12) 176 (2)
C2—H2A···Cg1iii 0.989 (17) 2.927 (18) 3.7250 (12) 138.5 (12)
C5—H5A···Cg1iv 0.976 (14) 2.825 (13) 3.6505 (11) 142.8 (10)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) x, −y+1/2, z−1/2; (iv) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2477).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o445. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1591–o1592. [DOI] [PMC free article] [PubMed]
  7. Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel’s Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.
  8. Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym.51, 101–110.
  9. Pilgram, K. H. G. (1978). US Patent No. 4 108 399.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem.20, 1520–1521. [DOI] [PubMed]
  13. Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022521/tk2477sup1.cif

e-65-o1619-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022521/tk2477Isup2.hkl

e-65-o1619-Isup2.hkl (196KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES