Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 13;65(Pt 7):o1566–o1567. doi: 10.1107/S1600536809021412

4-Cyclo­butyl­amino-3-nitro­benzoic acid

Shivanagere Nagojappa Narendra Babu a, Aisyah Saad Abdul Rahim a,, Hasnah Osman b, Ching Kheng Quah c,§, Hoong-Kun Fun c,*,
PMCID: PMC2969240  PMID: 21582847

Abstract

The asymmetric unit of the title compound, C11H12N2O4, contains two crystallographically independent mol­ecules with similar geometries. Both mol­ecules contain an intra­molecular N—H⋯O hydrogen bond. The dihedral angles between the benzene ring and the mean plane of the cyclo­butane ring are 38.29 (7) and 57.04 (8)° in the two mol­ecules, and the nitro group is twisted slightly away from the plane of the benzene ring [dihedral angles = 9.15 (12) and 9.55 (12)° in the two mol­ecules]. In the crystal, the independent mol­ecules are linked into dimers by O—H⋯O hydrogen bonds between their carboxyl groups, and C—H⋯O and C—H⋯π inter­actions are formed between dimers.

Related literature

For the biological activity of benzimidazole derivatives, see: Wright (1951); Singh et al. (2009). For details of the synthesis, see: Narendra Babu et al. (2009a ,b ); Ishida et al. (2006).graphic file with name e-65-o1566-scheme1.jpg

Experimental

Crystal data

  • C11H12N2O4

  • M r = 236.23

  • Triclinic, Inline graphic

  • a = 9.8555 (2) Å

  • b = 10.5308 (2) Å

  • c = 10.9110 (2) Å

  • α = 74.860 (1)°

  • β = 78.265 (1)°

  • γ = 84.826 (1)°

  • V = 1069.44 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 110 K

  • 0.37 × 0.23 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.960, T max = 0.976

  • 29344 measured reflections

  • 7670 independent reflections

  • 6094 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.139

  • S = 1.05

  • 7670 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021412/bi2372sup1.cif

e-65-o1566-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021412/bi2372Isup2.hkl

e-65-o1566-Isup2.hkl (375.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H1OA⋯O1Bi 0.81 1.76 2.5608 (13) 166
O2B—H1OB⋯O1Aii 0.83 1.89 2.7118 (12) 170
N2A—H1NA⋯O4A 0.89 (2) 1.93 (2) 2.6332 (13) 135.3 (17)
N2B—H1NB⋯O4B 0.80 (2) 2.05 (2) 2.6432 (13) 130.7 (18)
C8B—H8BB⋯O4Aiii 0.97 2.54 3.4613 (16) 158
C8B—H8BACg1iv 0.97 2.83 3.4744 (13) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 is the centroid of the C1B–C6B benzene ring.

Acknowledgments

SNNB, ASAR and HO are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB acknowledges USM for a Postdoctoral Research Fellowship. HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship.

supplementary crystallographic information

Comment

Multi functionalized benzimidazole remains as an attractive scaffold to display essential binding moieties against many validated biological targets (Wright, 1951; Singh et al., 2009). This heterocycle is commonly accessed via nitro benzoic acid derivatives, which form a part of our current synthetic chemistry work (Narendra Babu et al., 2009a&b; Ishida et al., 2006). Recently, we have successfully synthesized the title compound, whose crystal structure is described here.

The asymmetric unit contains two crystallographically independent molecules (Fig. 1), A and B with similar geometries. An intramolecular N–H···O hydrogen bond is formed in both independent molecules. The dihedral angle formed by the C1A–C6A benzene ring and C7A–C10A cyclobutane is 38.29 (7)° and that between the C1B–C6B benzene ring and C7B–C10B cyclobutane is 57.04 (8)°. The nitro group in each molecule is slightly twisted away from the attached benzene ring as indicated by the torsion angle O3—N1—C1—C2, being 7.97 (15)° and 7.80 (14)° in molecules A and B, respectively.

The crystal packing (Fig. 2) is consolidated by intermolecular O—H···O and C—H···O hydrogen bonds. Molecules are linked by O—H···O hydrogen bonds between their carboxylate groups to form dimers. The crystal structure is further stabilized by C—H···π (Table 1) interactions involving the C1B–C6B benzene ring (centroid Cg1) and short O4B···O4B contacts (symmetry code: 2 - x, 1 - y, 1 - z) with distance = 2.8957 (12) Å which is shorter than the sum of van der Waals radii of the O atoms.

Experimental

The title compound was obtained by refluxing ethyl 4-(cyclobutylamino)-3-nitro-benzoate (0.2 g, 0.0007 mol) and KOH (0.08 g, 0.0015 mol) in aqueous ethanol (5 ml) for 3 h. After completion of the reaction, ethanol was distilled off and the reaction mixture was diluted with water (5 ml). The aqueous layer was washed with dichloromethane (2 × 5 ml) and acidified with concentrated hydrochloric acid to afford a yellow solid. Yellow crystals suitable for X-ray analysis were obtained after recrystallization of the crude product with hot ethyl acetate.

Refinement

H atoms bound to N and O atoms were located from difference Fourier maps. Atoms H1NA and H1NB were refined freely, while atoms H1OA and H1OB were refined as riding on the parent O atom with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms. The dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

Packing diagram viewed along the a axis. Intermolecular interactions are shown as dashed lines.

Crystal data

C11H12N2O4 Z = 4
Mr = 236.23 F(000) = 496
Triclinic, P1 Dx = 1.467 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8555 (2) Å Cell parameters from 9970 reflections
b = 10.5308 (2) Å θ = 2.1–34.1°
c = 10.9110 (2) Å µ = 0.11 mm1
α = 74.860 (1)° T = 110 K
β = 78.265 (1)° Block, yellow
γ = 84.826 (1)° 0.37 × 0.23 × 0.21 mm
V = 1069.44 (4) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 7670 independent reflections
Radiation source: fine-focus sealed tube 6094 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 32.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −13→14
Tmin = 0.960, Tmax = 0.976 k = −15→15
29344 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.079P)2 + 0.2648P] where P = (Fo2 + 2Fc2)/3
7670 reflections (Δ/σ)max < 0.001
315 parameters Δρmax = 0.68 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat operating at 110.0 (1) K. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.41436 (8) 0.68803 (8) −0.08160 (8) 0.02153 (17)
O2A 0.24499 (9) 0.80673 (8) 0.01400 (9) 0.02327 (17)
H1OA 0.2969 0.8671 −0.0208 0.035*
O3A −0.16874 (10) 0.63616 (9) 0.25760 (10) 0.0315 (2)
O4A −0.22880 (9) 0.43744 (8) 0.28295 (10) 0.02693 (19)
N1A −0.14187 (9) 0.52458 (9) 0.24261 (9) 0.01836 (18)
N2A −0.04041 (10) 0.25875 (8) 0.22307 (9) 0.01699 (17)
C1A −0.00540 (10) 0.49386 (10) 0.17520 (10) 0.01442 (17)
C2A 0.07959 (10) 0.59982 (10) 0.11780 (10) 0.01488 (18)
H2AA 0.0469 0.6840 0.1240 0.018*
C3A 0.21236 (10) 0.58164 (10) 0.05150 (10) 0.01456 (17)
C4A 0.26136 (10) 0.45284 (10) 0.04592 (10) 0.01638 (18)
H4AA 0.3507 0.4394 0.0023 0.020*
C5A 0.17907 (11) 0.34694 (10) 0.10395 (10) 0.01650 (18)
H5AA 0.2147 0.2629 0.1001 0.020*
C6A 0.04005 (10) 0.36263 (9) 0.17013 (9) 0.01448 (17)
C7A 0.00443 (12) 0.12158 (10) 0.24008 (10) 0.01755 (19)
H7AA 0.0805 0.1007 0.2885 0.021*
C8A 0.03497 (12) 0.06059 (10) 0.12218 (11) 0.0202 (2)
H8AA −0.0060 0.1105 0.0496 0.024*
H8AB 0.1325 0.0396 0.0947 0.024*
C9A −0.04894 (13) −0.05907 (11) 0.20696 (11) 0.0229 (2)
H9AA −0.1156 −0.0859 0.1652 0.027*
H9AB 0.0080 −0.1337 0.2436 0.027*
C10A −0.11338 (13) 0.02595 (11) 0.30201 (11) 0.0235 (2)
H10A −0.2046 0.0642 0.2902 0.028*
H10B −0.1131 −0.0179 0.3920 0.028*
C11A 0.29658 (10) 0.69811 (10) −0.00959 (10) 0.01597 (18)
O1B 0.37447 (9) 0.02069 (9) 0.91518 (9) 0.02540 (18)
O2B 0.55207 (10) −0.08564 (8) 0.81460 (9) 0.02504 (18)
H1OB 0.5107 −0.1537 0.8547 0.038*
O3B 0.91441 (9) 0.17243 (8) 0.51738 (8) 0.02423 (18)
O4B 0.93948 (9) 0.37738 (8) 0.50719 (9) 0.02599 (19)
N1B 0.87317 (9) 0.27498 (9) 0.54966 (9) 0.01787 (17)
N2B 0.73342 (10) 0.51524 (9) 0.61428 (9) 0.01799 (17)
C1B 0.74352 (10) 0.27632 (10) 0.63934 (10) 0.01530 (18)
C2B 0.68286 (11) 0.15493 (10) 0.69549 (10) 0.01604 (18)
H2BA 0.7277 0.0790 0.6762 0.019*
C3B 0.55681 (11) 0.14668 (10) 0.77957 (10) 0.01613 (18)
C4B 0.48894 (11) 0.26379 (10) 0.80444 (10) 0.01760 (19)
H4BA 0.4031 0.2595 0.8595 0.021*
C5B 0.54711 (11) 0.38380 (10) 0.74909 (10) 0.01740 (19)
H5BA 0.4991 0.4591 0.7669 0.021*
C6B 0.67903 (10) 0.39638 (10) 0.66502 (10) 0.01536 (18)
C7B 0.65788 (11) 0.63794 (10) 0.62404 (10) 0.01690 (18)
H7BA 0.6232 0.6385 0.7147 0.020*
C8B 0.54323 (12) 0.68736 (12) 0.54265 (12) 0.0239 (2)
H8BA 0.5534 0.6522 0.4674 0.029*
H8BB 0.4497 0.6780 0.5926 0.029*
C9B 0.59819 (13) 0.82720 (11) 0.51283 (13) 0.0249 (2)
H9BA 0.6070 0.8749 0.4228 0.030*
H9BB 0.5483 0.8803 0.5693 0.030*
C10B 0.73574 (12) 0.76364 (10) 0.55077 (11) 0.0208 (2)
H10C 0.8066 0.7525 0.4780 0.025*
H10D 0.7719 0.8058 0.6059 0.025*
C11B 0.49108 (11) 0.01977 (10) 0.83986 (10) 0.01689 (19)
H1NA −0.124 (2) 0.2777 (18) 0.2638 (18) 0.038 (5)*
H1NB 0.805 (2) 0.5208 (18) 0.5636 (18) 0.035 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0161 (3) 0.0208 (4) 0.0240 (4) −0.0040 (3) 0.0020 (3) −0.0025 (3)
O2A 0.0194 (4) 0.0128 (3) 0.0356 (5) −0.0029 (3) −0.0012 (3) −0.0049 (3)
O3A 0.0237 (4) 0.0165 (4) 0.0500 (6) −0.0019 (3) 0.0087 (4) −0.0125 (4)
O4A 0.0160 (4) 0.0180 (4) 0.0415 (5) −0.0058 (3) 0.0052 (3) −0.0044 (3)
N1A 0.0148 (4) 0.0143 (4) 0.0234 (4) −0.0015 (3) 0.0000 (3) −0.0027 (3)
N2A 0.0180 (4) 0.0103 (4) 0.0205 (4) −0.0027 (3) −0.0002 (3) −0.0020 (3)
C1A 0.0128 (4) 0.0122 (4) 0.0169 (4) −0.0012 (3) −0.0014 (3) −0.0021 (3)
C2A 0.0150 (4) 0.0114 (4) 0.0173 (4) −0.0014 (3) −0.0031 (3) −0.0015 (3)
C3A 0.0140 (4) 0.0120 (4) 0.0167 (4) −0.0026 (3) −0.0029 (3) −0.0011 (3)
C4A 0.0141 (4) 0.0151 (4) 0.0194 (4) −0.0003 (3) −0.0025 (3) −0.0039 (3)
C5A 0.0166 (4) 0.0123 (4) 0.0200 (4) 0.0002 (3) −0.0033 (3) −0.0032 (3)
C6A 0.0164 (4) 0.0116 (4) 0.0149 (4) −0.0020 (3) −0.0036 (3) −0.0014 (3)
C7A 0.0228 (5) 0.0102 (4) 0.0193 (4) −0.0021 (3) −0.0047 (4) −0.0019 (3)
C8A 0.0239 (5) 0.0149 (4) 0.0215 (5) −0.0003 (4) −0.0036 (4) −0.0043 (4)
C9A 0.0327 (6) 0.0137 (4) 0.0242 (5) −0.0039 (4) −0.0082 (4) −0.0049 (4)
C10A 0.0311 (6) 0.0140 (4) 0.0233 (5) −0.0083 (4) 0.0007 (4) −0.0030 (4)
C11A 0.0149 (4) 0.0140 (4) 0.0183 (4) −0.0026 (3) −0.0036 (3) −0.0018 (3)
O1B 0.0196 (4) 0.0211 (4) 0.0306 (4) −0.0075 (3) 0.0025 (3) −0.0011 (3)
O2B 0.0304 (4) 0.0145 (4) 0.0284 (4) −0.0049 (3) −0.0012 (3) −0.0040 (3)
O3B 0.0265 (4) 0.0204 (4) 0.0240 (4) −0.0019 (3) 0.0033 (3) −0.0082 (3)
O4B 0.0185 (4) 0.0176 (4) 0.0358 (5) −0.0053 (3) 0.0044 (3) −0.0016 (3)
N1B 0.0166 (4) 0.0166 (4) 0.0183 (4) −0.0021 (3) −0.0013 (3) −0.0017 (3)
N2B 0.0160 (4) 0.0133 (4) 0.0221 (4) −0.0024 (3) −0.0012 (3) −0.0011 (3)
C1B 0.0137 (4) 0.0145 (4) 0.0164 (4) −0.0030 (3) −0.0017 (3) −0.0016 (3)
C2B 0.0170 (4) 0.0133 (4) 0.0174 (4) −0.0025 (3) −0.0031 (3) −0.0025 (3)
C3B 0.0164 (4) 0.0134 (4) 0.0177 (4) −0.0040 (3) −0.0029 (3) −0.0014 (3)
C4B 0.0154 (4) 0.0164 (4) 0.0191 (4) −0.0025 (3) −0.0011 (3) −0.0022 (4)
C5B 0.0157 (4) 0.0146 (4) 0.0200 (5) −0.0016 (3) −0.0015 (3) −0.0022 (3)
C6B 0.0153 (4) 0.0134 (4) 0.0169 (4) −0.0020 (3) −0.0043 (3) −0.0015 (3)
C7B 0.0185 (4) 0.0129 (4) 0.0186 (4) −0.0014 (3) −0.0043 (4) −0.0017 (3)
C8B 0.0188 (5) 0.0209 (5) 0.0304 (6) −0.0031 (4) −0.0089 (4) 0.0008 (4)
C9B 0.0241 (5) 0.0166 (5) 0.0308 (6) −0.0003 (4) −0.0080 (4) 0.0018 (4)
C10B 0.0221 (5) 0.0131 (4) 0.0270 (5) −0.0038 (4) −0.0080 (4) −0.0011 (4)
C11B 0.0168 (4) 0.0145 (4) 0.0186 (4) −0.0039 (3) −0.0028 (3) −0.0022 (3)

Geometric parameters (Å, °)

O1A—C11A 1.2752 (13) O1B—C11B 1.2705 (13)
O2A—C11A 1.2763 (12) O2B—C11B 1.2812 (13)
O2A—H1OA 0.815 O2B—H1OB 0.829
O3A—N1A 1.2264 (12) O3B—N1B 1.2316 (12)
O4A—N1A 1.2439 (12) O4B—N1B 1.2440 (12)
N1A—C1A 1.4484 (13) N1B—C1B 1.4442 (13)
N2A—C6A 1.3413 (13) N2B—C6B 1.3412 (13)
N2A—C7A 1.4472 (13) N2B—C7B 1.4497 (13)
N2A—H1NA 0.888 (19) N2B—H1NB 0.802 (19)
C1A—C2A 1.3889 (14) C1B—C2B 1.3952 (14)
C1A—C6A 1.4254 (13) C1B—C6B 1.4313 (14)
C2A—C3A 1.3836 (14) C2B—C3B 1.3808 (14)
C2A—H2AA 0.930 C2B—H2BA 0.930
C3A—C4A 1.4105 (13) C3B—C4B 1.4122 (14)
C3A—C11A 1.4728 (14) C3B—C11B 1.4704 (14)
C4A—C5A 1.3740 (14) C4B—C5B 1.3718 (14)
C4A—H4AA 0.930 C4B—H4BA 0.930
C5A—C6A 1.4300 (14) C5B—C6B 1.4254 (14)
C5A—H5AA 0.930 C5B—H5BA 0.930
C7A—C10A 1.5347 (15) C7B—C10B 1.5365 (15)
C7A—C8A 1.5483 (15) C7B—C8B 1.5482 (15)
C7A—H7AA 0.980 C7B—H7BA 0.980
C8A—C9A 1.5477 (16) C8B—C9B 1.5458 (17)
C8A—H8AA 0.970 C8B—H8BA 0.970
C8A—H8AB 0.970 C8B—H8BB 0.970
C9A—C10A 1.5476 (16) C9B—C10B 1.5418 (16)
C9A—H9AA 0.970 C9B—H9BA 0.970
C9A—H9AB 0.970 C9B—H9BB 0.970
C10A—H10A 0.970 C10B—H10C 0.970
C10A—H10B 0.970 C10B—H10D 0.970
C11A—O2A—H1OA 111.9 C11B—O2B—H1OB 114.1
O3A—N1A—O4A 121.83 (9) O3B—N1B—O4B 122.07 (9)
O3A—N1A—C1A 119.01 (9) O3B—N1B—C1B 118.88 (9)
O4A—N1A—C1A 119.16 (9) O4B—N1B—C1B 119.05 (9)
C6A—N2A—C7A 126.24 (9) C6B—N2B—C7B 123.78 (9)
C6A—N2A—H1NA 114.6 (12) C6B—N2B—H1NB 118.5 (13)
C7A—N2A—H1NA 118.1 (12) C7B—N2B—H1NB 116.5 (13)
C2A—C1A—C6A 121.97 (9) C2B—C1B—C6B 122.19 (9)
C2A—C1A—N1A 115.91 (9) C2B—C1B—N1B 116.19 (9)
C6A—C1A—N1A 122.12 (9) C6B—C1B—N1B 121.58 (9)
C3A—C2A—C1A 120.77 (9) C3B—C2B—C1B 120.48 (9)
C3A—C2A—H2AA 119.6 C3B—C2B—H2BA 119.8
C1A—C2A—H2AA 119.6 C1B—C2B—H2BA 119.8
C2A—C3A—C4A 118.77 (9) C2B—C3B—C4B 118.68 (9)
C2A—C3A—C11A 118.30 (9) C2B—C3B—C11B 121.37 (9)
C4A—C3A—C11A 122.93 (9) C4B—C3B—C11B 119.92 (9)
C5A—C4A—C3A 121.02 (9) C5B—C4B—C3B 121.34 (10)
C5A—C4A—H4AA 119.5 C5B—C4B—H4BA 119.3
C3A—C4A—H4AA 119.5 C3B—C4B—H4BA 119.3
C4A—C5A—C6A 121.66 (9) C4B—C5B—C6B 121.84 (9)
C4A—C5A—H5AA 119.2 C4B—C5B—H5BA 119.1
C6A—C5A—H5AA 119.2 C6B—C5B—H5BA 119.1
N2A—C6A—C1A 123.24 (9) N2B—C6B—C5B 120.09 (9)
N2A—C6A—C5A 120.98 (9) N2B—C6B—C1B 124.48 (9)
C1A—C6A—C5A 115.78 (9) C5B—C6B—C1B 115.42 (9)
N2A—C7A—C10A 113.66 (9) N2B—C7B—C10B 115.50 (9)
N2A—C7A—C8A 119.61 (9) N2B—C7B—C8B 118.69 (9)
C10A—C7A—C8A 89.08 (8) C10B—C7B—C8B 88.50 (8)
N2A—C7A—H7AA 110.9 N2B—C7B—H7BA 110.8
C10A—C7A—H7AA 110.9 C10B—C7B—H7BA 110.8
C8A—C7A—H7AA 110.9 C8B—C7B—H7BA 110.8
C9A—C8A—C7A 88.22 (8) C9B—C8B—C7B 87.84 (8)
C9A—C8A—H8AA 113.9 C9B—C8B—H8BA 114.0
C7A—C8A—H8AA 113.9 C7B—C8B—H8BA 114.0
C9A—C8A—H8AB 113.9 C9B—C8B—H8BB 114.0
C7A—C8A—H8AB 113.9 C7B—C8B—H8BB 114.0
H8AA—C8A—H8AB 111.2 H8BA—C8B—H8BB 111.2
C10A—C9A—C8A 88.63 (8) C10B—C9B—C8B 88.40 (8)
C10A—C9A—H9AA 113.9 C10B—C9B—H9BA 113.9
C8A—C9A—H9AA 113.9 C8B—C9B—H9BA 113.9
C10A—C9A—H9AB 113.9 C10B—C9B—H9BB 113.9
C8A—C9A—H9AB 113.9 C8B—C9B—H9BB 113.9
H9AA—C9A—H9AB 111.1 H9BA—C9B—H9BB 111.1
C7A—C10A—C9A 88.71 (9) C7B—C10B—C9B 88.40 (8)
C7A—C10A—H10A 113.9 C7B—C10B—H10C 113.9
C9A—C10A—H10A 113.9 C9B—C10B—H10C 113.9
C7A—C10A—H10B 113.9 C7B—C10B—H10D 113.9
C9A—C10A—H10B 113.9 C9B—C10B—H10D 113.9
H10A—C10A—H10B 111.1 H10C—C10B—H10D 111.1
O1A—C11A—O2A 123.11 (10) O1B—C11B—O2B 122.99 (10)
O1A—C11A—C3A 120.54 (9) O1B—C11B—C3B 117.51 (9)
O2A—C11A—C3A 116.35 (9) O2B—C11B—C3B 119.49 (9)
O3A—N1A—C1A—C2A −7.97 (15) O3B—N1B—C1B—C2B 7.80 (14)
O4A—N1A—C1A—C2A 171.59 (10) O4B—N1B—C1B—C2B −172.39 (10)
O3A—N1A—C1A—C6A 170.85 (10) O3B—N1B—C1B—C6B −169.99 (10)
O4A—N1A—C1A—C6A −9.59 (15) O4B—N1B—C1B—C6B 9.82 (15)
C6A—C1A—C2A—C3A 0.82 (16) C6B—C1B—C2B—C3B −0.32 (16)
N1A—C1A—C2A—C3A 179.65 (9) N1B—C1B—C2B—C3B −178.10 (9)
C1A—C2A—C3A—C4A −1.57 (15) C1B—C2B—C3B—C4B 1.83 (15)
C1A—C2A—C3A—C11A 178.78 (9) C1B—C2B—C3B—C11B −179.98 (10)
C2A—C3A—C4A—C5A 0.59 (15) C2B—C3B—C4B—C5B −1.38 (16)
C11A—C3A—C4A—C5A −179.77 (10) C11B—C3B—C4B—C5B −179.61 (10)
C3A—C4A—C5A—C6A 1.17 (16) C3B—C4B—C5B—C6B −0.62 (16)
C7A—N2A—C6A—C1A −169.40 (10) C7B—N2B—C6B—C5B −9.26 (16)
C7A—N2A—C6A—C5A 10.71 (16) C7B—N2B—C6B—C1B 169.59 (10)
C2A—C1A—C6A—N2A −179.01 (10) C4B—C5B—C6B—N2B −179.01 (10)
N1A—C1A—C6A—N2A 2.23 (16) C4B—C5B—C6B—C1B 2.04 (15)
C2A—C1A—C6A—C5A 0.88 (15) C2B—C1B—C6B—N2B 179.51 (10)
N1A—C1A—C6A—C5A −177.88 (9) N1B—C1B—C6B—N2B −2.83 (16)
C4A—C5A—C6A—N2A 178.03 (10) C2B—C1B—C6B—C5B −1.59 (15)
C4A—C5A—C6A—C1A −1.86 (15) N1B—C1B—C6B—C5B 176.07 (9)
C6A—N2A—C7A—C10A −179.08 (10) C6B—N2B—C7B—C10B −175.71 (10)
C6A—N2A—C7A—C8A −75.85 (14) C6B—N2B—C7B—C8B −72.54 (14)
N2A—C7A—C8A—C9A −134.34 (10) N2B—C7B—C8B—C9B −138.08 (10)
C10A—C7A—C8A—C9A −17.43 (9) C10B—C7B—C8B—C9B −19.62 (9)
C7A—C8A—C9A—C10A 17.28 (9) C7B—C8B—C9B—C10B 19.55 (9)
N2A—C7A—C10A—C9A 139.60 (9) N2B—C7B—C10B—C9B 140.96 (10)
C8A—C7A—C10A—C9A 17.42 (8) C8B—C7B—C10B—C9B 19.66 (9)
C8A—C9A—C10A—C7A −17.43 (9) C8B—C9B—C10B—C7B −19.70 (9)
C2A—C3A—C11A—O1A −173.48 (10) C2B—C3B—C11B—O1B −179.36 (10)
C4A—C3A—C11A—O1A 6.87 (16) C4B—C3B—C11B—O1B −1.19 (15)
C2A—C3A—C11A—O2A 6.58 (14) C2B—C3B—C11B—O2B 0.37 (16)
C4A—C3A—C11A—O2A −173.06 (10) C4B—C3B—C11B—O2B 178.54 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2A—H1OA···O1Bi 0.81 1.76 2.5608 (13) 166
O2B—H1OB···O1Aii 0.83 1.89 2.7118 (12) 170
N2A—H1NA···O4A 0.89 (2) 1.93 (2) 2.6332 (13) 135.3 (17)
N2B—H1NB···O4B 0.80 (2) 2.05 (2) 2.6432 (13) 130.7 (18)
C8B—H8BB···O4Aiii 0.97 2.54 3.4613 (16) 158
C8B—H8BA···Cg1iv 0.97 2.83 3.4744 (13) 124

Symmetry codes: (i) x, y+1, z−1; (ii) x, y−1, z+1; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2372).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett.16, 1859–1863. [DOI] [PubMed]
  3. Narendra Babu, S. N., Abdul Rahim, A. S., Abd Hamid, S., Quah, C. K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1079. [DOI] [PMC free article] [PubMed]
  4. Narendra Babu, S. N., Abdul Rahim, A. S., Osman, H., Jebas, S. R. & Fun, H.-K. (2009b). Acta Cryst. E65, o1122–o1123. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Singh, S., Bharti, N. & Mohapatra, P. P. (2009). Chem. Rev.109, 1900–1947. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wright, J. B. (1951). Chem. Rev.48, 397–541. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021412/bi2372sup1.cif

e-65-o1566-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021412/bi2372Isup2.hkl

e-65-o1566-Isup2.hkl (375.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES