Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 13;65(Pt 7):m764–m765. doi: 10.1107/S1600536809021552

catena-Poly[[[tetra­aqua­cobalt(II)]-μ-4,4′-bipyridine-κ2 N:N′] 2-[4-(2-carboxyl­ato­eth­yl)phen­oxy]acetate]

Xi-Fang Wang a, Chong-Bo Liu a,*, De-He Huang a, Zhi-Qiang Xiong b
PMCID: PMC2969250  PMID: 21582697

Abstract

In the title complex, {[Co(C10H8N2)(H2O)4](C11H10O5)}n, the unique CoII ion lies on an inversion center and is coordinated by two N atoms from two 4,4′-bipyridine ligands and four O atoms from four water mol­ecules in a slightly distorted octa­hedral coordination geometry. The 4,4′-bipyridine ligands bridge CoII ions into a one-dimensional chain structure. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link cations and anions into a three-dimensional network. The dianions are completely disordered about an inversion center.

Related literature

For background to assembly of high-dimensional supra­molecular coordination polymers, see: Ye et al. (2005). For 3-(4-hydroxy­phen­yl)propanoic acid as a potential multidentate ligand and a good donor and acceptor of hydrogen bonds, see: Tan et al. (2007). 4,4′-Bipyridine is widely used as a spacer in the construction of supra­molecular architectures, see: Tao et al. (2000); Cussen et al. (2002). For the analogous one-dimensional structure with a 3-carboxyl­atophenoxy­acetate dianion, see: Zhao et al. (2005).graphic file with name e-65-0m764-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H8N2)(H2O)4](C11H10O5)

  • M r = 509.37

  • Triclinic, Inline graphic

  • a = 7.1311 (10) Å

  • b = 7.6319 (10) Å

  • c = 10.4978 (14) Å

  • α = 91.930 (1)°

  • β = 101.832 (1)°

  • γ = 94.002 (1)°

  • V = 557.15 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 291 K

  • 0.50 × 0.41 × 0.21 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.674, T max = 0.845

  • 4108 measured reflections

  • 2036 independent reflections

  • 2008 reflections with I > 2σ(I)

  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.085

  • S = 1.06

  • 2036 reflections

  • 176 parameters

  • 364 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021552/lh2836sup1.cif

e-65-0m764-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021552/lh2836Isup2.hkl

e-65-0m764-Isup2.hkl (100.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co1—O1 2.0840 (16)
Co1—O2 2.1083 (16)
Co1—N1 2.1530 (17)
O1i—Co1—O1 180
O1—Co1—O2i 88.34 (7)
O1—Co1—O2 91.66 (7)
O2i—Co1—O2 180
O1—Co1—N1 91.93 (7)
O2—Co1—N1 90.36 (7)
O1—Co1—N1i 88.07 (7)
O2—Co1—N1i 89.63 (7)
N1—Co1—N1i 180

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H4W⋯O4′ii 0.83 2.00 2.796 (10) 161
O2—H4W⋯O4ii 0.83 1.86 2.667 (10) 165
O2—H3W⋯O4iii 0.83 1.96 2.765 (14) 163
O2—H3W⋯O4′iii 0.83 1.86 2.678 (14) 170
O1—H2W⋯O3iv 0.82 2.07 2.868 (16) 164
O1—H2W⋯O3′iv 0.82 1.90 2.691 (16) 161
O1—H1W⋯O3v 0.83 1.97 2.789 (13) 169
O1—H1W⋯O3′v 0.83 1.79 2.612 (14) 174

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Young Scientists Program of Jiangxi Province (grant No. 2008DQ00600) and the Natural Science Foundation of Jiangxi Province (grant No. 2008GZH0009).

supplementary crystallographic information

Comment

In recent years, assembly of high-dimensional supramolecular coordination polymers via coordination bonds, hydrogen bonds, and π···π stacks (Ye et al., 2005) have received much attention and carboxylic acid compounds as good donors and acceptors of hydrogen bonds have been widely utilized as ligands. 3-(4-hydroxyphenyl)propanoic acid (Tan et al., 2007) a pseudo-symmetric carboxylate acid is a potential multidentate ligand and a good donor and acceptor of hydrogen bonds, but its coordination polymers are less investigated. 4,4'-bipyridine is a neutral linear bifunctional ligand that is widely used as an excellent spacer in the construction of supramolecular architectures (Cussen et al., 2002; Tao et al., 2000). Here, we report the synthesis and crystals structure of a cobalt supramolecular complex formed using with 4,4'-bipyridine and 3-(4-(carboxymethoxy)phenyl)propanoic acid.

The asymmetric unit and some symmetry related atoms are shown in Fig. 1. The unique CoII ion lies on an invesion center and is coordinated by two nitrogen atoms from two 4,4'-bipyridine ligands and four oxygen atoms from four water molecules in a slightly distorted octahedral coordination geometry. The molecules of 3-(4-(carboxymethoxy)phenyl)propanoic acid are completely deprotonated but remain uncoordinated, and the 4,4'-bipyridine ligands act as bridging to join the CoII ions into a one-dimensional chain structure, which is further linked to a 3-D network through intermolecular O—H···O hydrogen bonds.

Experimental

A mixture of CoCl2.2H2O (0.1 mmol), 4,4'-bipyridine (0.1 mmol), 3-(4-(carboxymethoxy)phenyl)propanoic acid (0.1 mmol) and 10 ml water was placed in a tube and heated at 363 K for 6 h, then cooled to room temperature. Upon cooling to RT, a few red crystals were obtained. Anal. Calcd for C21H26N2O9Co (509.37): C, 49.47; H, 5.10; N, 5.50%; Found: C, 49.23; H, 4.98; N, 5.19%.

Refinement

The water H atoms were located in a difference Fourier map but were included in fixed positions in riding-model approximation with the O—H distances in the range 0.8245–0.8271 Å and Uiso(H) = 1.5Ueq(O); all other H atoms were placed in geometrically idealized positions with CH(methylene) = 0.97 Å, C—H(aromatic) = 0.93 Å, and Uiso(H) = 1.2Ueq(C). The dianion is completely disordered over an inversion center. The SADI and EADP commands in SHELXL (Sheldrick, 2008) were used to model the disorder.

Figures

Fig. 1.

Fig. 1.

: Part of the title complex (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and most H atoms are omitted for clarity. Primed atoms indicate one of the disorder components. [Symmetry codes: (A) -x, -y, -z; (B) 1 - x, -y, 1 - z; (C) 1 + x, -1 + y, z.]

Crystal data

[Co(C10H8N2)(H2O)4](C11H10O5) Z = 1
Mr = 509.37 F(000) = 265
Triclinic, P1 Dx = 1.518 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1311 (10) Å Cell parameters from 3868 reflections
b = 7.6319 (10) Å θ = 2.7–28.2°
c = 10.4978 (14) Å µ = 0.83 mm1
α = 91.930 (1)° T = 291 K
β = 101.832 (1)° Block, red
γ = 94.002 (1)° 0.50 × 0.41 × 0.21 mm
V = 557.15 (13) Å3

Data collection

Bruker SMART CCD diffractometer 2036 independent reflections
Radiation source: fine-focus sealed tube 2008 reflections with I > 2σ(I)
graphite Rint = 0.011
φ and ω scans θmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.674, Tmax = 0.845 k = −9→9
4108 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.7695P] where P = (Fo2 + 2Fc2)/3
2036 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.61 e Å3
364 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O3 0.7094 (13) 0.448 (3) 0.8766 (14) 0.0419 (15) 0.50
O4 0.522 (2) 0.2444 (14) 0.9494 (9) 0.0368 (16) 0.50
C8 0.3511 (11) 0.4124 (10) 0.6667 (8) 0.0635 (11) 0.50
H8A 0.4539 0.4806 0.6385 0.076* 0.50
H8B 0.3700 0.2890 0.6533 0.076* 0.50
C6 0.5492 (16) 0.370 (3) 0.879 (3) 0.0363 (9) 0.50
C7 0.3670 (11) 0.4520 (12) 0.8095 (7) 0.0522 (14) 0.50
H7A 0.2547 0.4010 0.8376 0.063* 0.50
H7B 0.3781 0.5780 0.8285 0.063* 0.50
C9 0.1644 (19) 0.451 (2) 0.5829 (11) 0.0583 (13) 0.50
C10 0.1182 (18) 0.3869 (16) 0.4541 (10) 0.0612 (15) 0.50
H10 0.1933 0.3074 0.4232 0.073* 0.50
C11 0.0411 (14) 0.5566 (15) 0.6274 (14) 0.0575 (17) 0.50
H11 0.0658 0.5913 0.7154 0.069* 0.50
O3' 0.7312 (13) 0.450 (3) 0.9043 (14) 0.0419 (15) 0.50
O4' 0.513 (2) 0.2290 (14) 0.9156 (9) 0.0368 (16) 0.50
C6' 0.5648 (17) 0.374 (3) 0.876 (3) 0.0363 (9) 0.50
C7' 0.4168 (11) 0.4553 (12) 0.7713 (8) 0.0522 (14) 0.50
H7'1 0.3503 0.5373 0.8153 0.063* 0.50
H7'2 0.4868 0.5234 0.7173 0.063* 0.50
O5 0.2825 (7) 0.3461 (6) 0.6915 (5) 0.0635 (11) 0.50
C9' 0.1435 (18) 0.435 (2) 0.5964 (11) 0.0583 (13) 0.50
C10' 0.1492 (18) 0.4241 (16) 0.4648 (9) 0.0612 (15) 0.50
H10' 0.2554 0.3795 0.4403 0.073* 0.50
C11' −0.0013 (14) 0.5223 (14) 0.6328 (14) 0.0575 (17) 0.50
H11' −0.0012 0.5453 0.7204 0.069* 0.50
Co1 0.0000 0.0000 0.0000 0.02210 (13)
O1 0.0283 (2) 0.2722 (2) −0.01206 (18) 0.0396 (4)
H1W −0.0701 0.3243 −0.0349 0.059*
H2W 0.1207 0.3397 0.0241 0.059*
O2 0.2400 (2) −0.0305 (2) −0.08486 (16) 0.0338 (4)
H3W 0.3136 0.0561 −0.0905 0.051*
H4W 0.2965 −0.1087 −0.0441 0.051*
N1 0.1824 (3) 0.0139 (3) 0.19142 (17) 0.0288 (4)
C1 0.3560 (3) 0.1002 (3) 0.2175 (2) 0.0341 (5)
H1 0.3934 0.1655 0.1524 0.041*
C2 0.4835 (3) 0.0981 (3) 0.3358 (2) 0.0356 (6)
H2 0.6033 0.1601 0.3483 0.043*
C3 0.4332 (3) 0.0036 (3) 0.4357 (2) 0.0285 (5)
C4 0.2514 (4) −0.0850 (5) 0.4090 (3) 0.0557 (9)
H4 0.2096 −0.1502 0.4726 0.067*
C5 0.1325 (4) −0.0761 (4) 0.2877 (3) 0.0532 (8)
H5 0.0114 −0.1361 0.2725 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0288 (17) 0.0355 (10) 0.050 (5) −0.0043 (18) −0.0169 (18) 0.009 (3)
O4 0.0306 (14) 0.0374 (17) 0.038 (4) 0.0015 (14) −0.005 (3) 0.010 (3)
C8 0.053 (2) 0.056 (2) 0.067 (2) 0.0142 (17) −0.0250 (18) 0.0040 (18)
C6 0.0301 (17) 0.0288 (13) 0.0428 (15) 0.0016 (14) −0.0095 (18) 0.0037 (10)
C7 0.044 (3) 0.0434 (16) 0.059 (3) 0.006 (2) −0.016 (2) 0.011 (2)
C9 0.044 (2) 0.058 (2) 0.065 (2) 0.0198 (19) −0.0110 (16) −0.0018 (17)
C10 0.042 (3) 0.063 (3) 0.072 (2) 0.020 (3) −0.0052 (19) −0.016 (2)
C11 0.047 (3) 0.063 (3) 0.059 (2) 0.010 (3) 0.001 (2) −0.001 (2)
O3' 0.0288 (17) 0.0355 (10) 0.050 (5) −0.0043 (18) −0.0169 (18) 0.009 (3)
O4' 0.0306 (14) 0.0374 (17) 0.038 (4) 0.0015 (14) −0.005 (3) 0.010 (3)
C6' 0.0301 (17) 0.0288 (13) 0.0428 (15) 0.0016 (14) −0.0095 (18) 0.0037 (10)
C7' 0.044 (3) 0.0434 (16) 0.059 (3) 0.006 (2) −0.016 (2) 0.011 (2)
O5 0.053 (2) 0.056 (2) 0.067 (2) 0.0142 (17) −0.0250 (18) 0.0040 (18)
C9' 0.044 (2) 0.058 (2) 0.065 (2) 0.0198 (19) −0.0110 (16) −0.0018 (17)
C10' 0.042 (3) 0.063 (3) 0.072 (2) 0.020 (3) −0.0052 (19) −0.016 (2)
C11' 0.047 (3) 0.063 (3) 0.059 (2) 0.010 (3) 0.001 (2) −0.001 (2)
Co1 0.0185 (2) 0.0246 (2) 0.0200 (2) 0.00069 (15) −0.00368 (15) 0.00413 (15)
O1 0.0309 (9) 0.0260 (8) 0.0538 (11) −0.0002 (7) −0.0092 (8) 0.0043 (8)
O2 0.0249 (8) 0.0398 (9) 0.0356 (9) 0.0033 (7) 0.0029 (7) 0.0085 (7)
N1 0.0246 (9) 0.0354 (10) 0.0226 (9) 0.0004 (8) −0.0041 (7) 0.0048 (8)
C1 0.0307 (12) 0.0427 (14) 0.0248 (11) −0.0057 (10) −0.0024 (9) 0.0090 (10)
C2 0.0279 (12) 0.0450 (14) 0.0281 (12) −0.0084 (10) −0.0052 (9) 0.0073 (10)
C3 0.0280 (11) 0.0307 (11) 0.0229 (11) 0.0029 (9) −0.0044 (9) 0.0025 (9)
C4 0.0417 (15) 0.084 (2) 0.0310 (14) −0.0249 (15) −0.0109 (11) 0.0275 (14)
C5 0.0352 (14) 0.079 (2) 0.0348 (14) −0.0234 (14) −0.0105 (11) 0.0218 (14)

Geometric parameters (Å, °)

O3—C6 1.257 (6) C10'—H10' 0.9300
O4—C6 1.257 (6) C11'—C10'i 1.41 (2)
C8—C9 1.491 (13) C11'—H11' 0.9300
C8—C7 1.499 (11) Co1—O1ii 2.0840 (16)
C8—H8A 0.9700 Co1—O1 2.0840 (16)
C8—H8B 0.9700 Co1—O2ii 2.1083 (16)
C6—C7 1.540 (8) Co1—O2 2.1083 (16)
C7—H7A 0.9700 Co1—N1 2.1530 (17)
C7—H7B 0.9700 Co1—N1ii 2.1531 (17)
C9—C11 1.375 (6) O1—H1W 0.8271
C9—C10 1.387 (7) O1—H2W 0.8245
C10—C11i 1.379 (19) O2—H3W 0.8262
C10—H10 0.9300 O2—H4W 0.8251
C11—C10i 1.379 (19) N1—C1 1.333 (3)
C11—H11 0.9300 N1—C5 1.334 (3)
O3'—C6' 1.258 (6) C1—C2 1.382 (3)
O4'—C6' 1.255 (6) C1—H1 0.9300
C6'—C7' 1.537 (7) C2—C3 1.385 (3)
C7'—O5 1.352 (10) C2—H2 0.9300
C7'—H7'1 0.9700 C3—C4 1.390 (3)
C7'—H7'2 0.9700 C3—C3iii 1.489 (4)
O5—C9' 1.475 (13) C4—C5 1.384 (3)
C9'—C11' 1.377 (6) C4—H4 0.9300
C9'—C10' 1.391 (7) C5—H5 0.9300
C10'—C11'i 1.41 (2)
C9—C8—C7 114.6 (7) C9'—C11'—H11' 120.6
C9—C8—H8A 108.6 C10'i—C11'—H11' 120.6
C7—C8—H8A 108.6 O1ii—Co1—O1 180
C9—C8—H8B 108.6 O1ii—Co1—O2ii 91.66 (7)
C7—C8—H8B 108.6 O1—Co1—O2ii 88.34 (7)
H8A—C8—H8B 107.6 O1ii—Co1—O2 88.33 (7)
O3—C6—O4 125.4 (9) O1—Co1—O2 91.66 (7)
O3—C6—C7 118.0 (7) O2ii—Co1—O2 180
O4—C6—C7 115.7 (8) O1ii—Co1—N1 88.07 (7)
C8—C7—C6 106.0 (13) O1—Co1—N1 91.93 (7)
C8—C7—H7A 110.5 O2ii—Co1—N1 89.64 (7)
C6—C7—H7A 110.5 O2—Co1—N1 90.36 (7)
C8—C7—H7B 110.5 O1ii—Co1—N1ii 91.93 (7)
C6—C7—H7B 110.5 O1—Co1—N1ii 88.07 (7)
H7A—C7—H7B 108.7 O2ii—Co1—N1ii 90.36 (7)
C11—C9—C10 118.6 (7) O2—Co1—N1ii 89.63 (7)
C11—C9—C8 121.7 (6) N1—Co1—N1ii 180
C10—C9—C8 119.5 (5) Co1—O1—H1W 118.4
C11i—C10—C9 119.0 (12) Co1—O1—H2W 126.8
C11i—C10—H10 120.5 H1W—O1—H2W 112.0
C9—C10—H10 120.5 Co1—O2—H3W 119.7
C9—C11—C10i 122.2 (12) Co1—O2—H4W 104.4
C9—C11—H11 118.9 H3W—O2—H4W 112.1
C10i—C11—H11 118.9 C1—N1—C5 116.50 (19)
O4'—C6'—O3' 125.8 (9) C1—N1—Co1 122.27 (15)
O4'—C6'—C7' 116.6 (7) C5—N1—Co1 121.02 (16)
O3'—C6'—C7' 117.2 (6) N1—C1—C2 123.7 (2)
O5—C7'—C6' 118.2 (10) N1—C1—H1 118.2
O5—C7'—H7'1 107.8 C2—C1—H1 118.2
C6'—C7'—H7'1 107.8 C1—C2—C3 120.1 (2)
O5—C7'—H7'2 107.8 C1—C2—H2 119.9
C6'—C7'—H7'2 107.8 C3—C2—H2 119.9
H7'1—C7'—H7'2 107.1 C2—C3—C4 116.2 (2)
C7'—O5—C9' 114.6 (8) C2—C3—C3iii 121.9 (3)
C11'—C9'—C10' 117.9 (7) C4—C3—C3iii 121.9 (3)
C11'—C9'—O5 121.8 (6) C5—C4—C3 120.0 (2)
C10'—C9'—O5 120.2 (6) C5—C4—H4 120.0
C9'—C10'—C11'i 122.8 (12) C3—C4—H4 120.0
C9'—C10'—H10' 118.6 N1—C5—C4 123.5 (2)
C11'i—C10'—H10' 118.6 N1—C5—H5 118.2
C9'—C11'—C10'i 118.8 (12) C4—C5—H5 118.2
C9—C8—C7—C6 168.9 (10) O1—Co1—N1—C1 −51.9 (2)
O3—C6—C7—C8 76 (3) O2ii—Co1—N1—C1 −140.20 (19)
O4—C6—C7—C8 −114 (2) O2—Co1—N1—C1 39.80 (19)
C7—C8—C9—C11 17.1 (18) N1ii—Co1—N1—C1 66 (3)
C7—C8—C9—C10 −167.0 (13) O1ii—Co1—N1—C5 −46.4 (2)
C11—C9—C10—C11i 5(2) O1—Co1—N1—C5 133.6 (2)
C8—C9—C10—C11i −170.8 (13) O2ii—Co1—N1—C5 45.3 (2)
C10—C9—C11—C10i −5(2) O2—Co1—N1—C5 −134.7 (2)
C8—C9—C11—C10i 170.5 (13) N1ii—Co1—N1—C5 −109 (3)
O4'—C6'—C7'—O5 −27 (3) C5—N1—C1—C2 1.0 (4)
O3'—C6'—C7'—O5 146 (2) Co1—N1—C1—C2 −173.7 (2)
C6'—C7'—O5—C9' 178.6 (13) N1—C1—C2—C3 −0.5 (4)
C7'—O5—C9'—C11' −74.6 (15) C1—C2—C3—C4 −0.2 (4)
C7'—O5—C9'—C10' 109.2 (15) C1—C2—C3—C3iii 179.5 (3)
C11'—C9'—C10'—C11'i −8(2) C2—C3—C4—C5 0.3 (5)
O5—C9'—C10'—C11'i 168.0 (12) C3iii—C3—C4—C5 −179.4 (3)
C10'—C9'—C11'—C10'i 8(2) C1—N1—C5—C4 −0.9 (5)
O5—C9'—C11'—C10'i −168.3 (12) Co1—N1—C5—C4 173.9 (3)
O1ii—Co1—N1—C1 128.1 (2) C3—C4—C5—N1 0.3 (6)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z; (iii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H4W···O4'iii 0.83 2.00 2.796 (10) 161
O2—H4W···O4iii 0.83 1.86 2.667 (10) 165
O2—H3W···O4iv 0.83 1.96 2.765 (14) 163
O2—H3W···O4'iv 0.83 1.86 2.678 (14) 170
O1—H2W···O3v 0.82 2.07 2.868 (16) 164
O1—H2W···O3'v 0.82 1.90 2.691 (16) 161
O1—H1W···O3vi 0.83 1.97 2.789 (13) 169
O1—H1W···O3'vi 0.83 1.79 2.612 (14) 174

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) x, y, z−1; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2836).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cussen, E. J., Claridge, J. B., Rosseinsky, M. J. & Kepert, C. J. (2002). J. Am. Chem. Soc.124, 9574–9581. [DOI] [PubMed]
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tan, S., Wen, H., Liu, C., Peng, X. & Li, X. (2007). Z. Kristallogr. New Cryst. Struct.222, 137–138.
  6. Tao, J., Tong, M. L. & Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. p. 3669–3674.
  7. Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev.249, 545–565.
  8. Zhao, J.-G., Gu, C.-S., Gao, S., Huo, L.-H. & Liu, J.-W. (2005). Acta Cryst. E61, m33–m35.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809021552/lh2836sup1.cif

e-65-0m764-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809021552/lh2836Isup2.hkl

e-65-0m764-Isup2.hkl (100.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES