Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):m715. doi: 10.1107/S1600536809019734

Bis[4-(dimethyl­amino)pyridinium] hexa­kis[bromido/chlorido(0.78/0.22)]stannate(IV)

Kong Mun Lo a, Seik Weng Ng a,*
PMCID: PMC2969252  PMID: 21582659

Abstract

The Sn atom in the title salt, (C7H11N2)2[SnBr4.67Cl1.33], lies on a center of symmetry within an octa­hedron of disordered halogen atoms. The three independent halogen atoms are each a mixture of bromine and chlorine atoms [with site occupancies for bromine of 0.614 (1), 0.831 (1) and 0.888 (1)]. An N—H⋯ hydrogen bond is present.

Related literature

For the isostructural tribromidotrichloridostannate, see: Lo & Ng (2008); for the isostructural penta­bromido­chlorido­stannate, see: Jang et al. (2009).graphic file with name e-65-0m715-scheme1.jpg

Experimental

Crystal data

  • (C7H11N2)2[SnBr4.67Cl1.33]

  • M r = 785.15

  • Monoclinic, Inline graphic

  • a = 8.4530 (2) Å

  • b = 11.9036 (2) Å

  • c = 11.9093 (2) Å

  • β = 107.109 (1)°

  • V = 1145.30 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.42 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.504, T max = 0.746 (expected range = 0.103–0.152)

  • 10319 measured reflections

  • 2622 independent reflections

  • 2240 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.060

  • S = 0.99

  • 2622 reflections

  • 127 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019734/tk2458sup1.cif

e-65-0m715-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019734/tk2458Isup2.hkl

e-65-0m715-Isup2.hkl (128.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.88 (1) 2.484 (18) 3.334 (3) 162 (4)

Acknowledgments

We thank the University of Malaya (RG020/09AFR) for supporting this study.

supplementary crystallographic information

Experimental

Dibenzyltin dichloride (0.37 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.73 g, 2 mmol) were heated in chloroform for 1 hour. Colorless crystals separated from the cool solution after a day. The benzyl groups on tin has been cleaved in the reaction. In the previous study, a heating time of 3 hours gave the pentabromidochloridostannate (Jang et al., 2009).

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98, N–H 0.88 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C,N).

The three halogen atoms in the stannate are disordered. The sum of the occupancies of the three bromide atoms refined to nearly 2.33Br and 0.67Cl atoms; the total occupancy of the disordered bromide atoms was then fixed as exactly 2.333. The occupancy of the disordered chloride atoms was similarly set to be 0.667. The anisotropic displacement parameters of each pair of Br/Cl atoms were restrained to be identical.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of 2[C7H11N2]+ [SnBr4.67Cl1.33]2- at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The bromine atoms are disordered with respect to the chlorine atoms.

Crystal data

(C7H11N2)2[SnBr4.67Cl1.33] F(000) = 740
Mr = 785.15 Dx = 2.277 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4263 reflections
a = 8.4530 (2) Å θ = 2.5–28.3°
b = 11.9036 (2) Å µ = 9.42 mm1
c = 11.9093 (2) Å T = 100 K
β = 107.109 (1)° Irregular block, colorless
V = 1145.30 (4) Å3 0.30 × 0.25 × 0.20 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 2622 independent reflections
Radiation source: fine-focus sealed tube 2240 reflections with I > 2σ(I)
graphite Rint = 0.033
ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.504, Tmax = 0.746 k = −15→15
10319 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.6005P] where P = (Fo2 + 2Fc2)/3
2622 reflections (Δ/σ)max = 0.001
127 parameters Δρmax = 0.80 e Å3
6 restraints Δρmin = −0.87 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 0.5000 0.5000 0.5000 0.01384 (8)
Br1 0.50914 (5) 0.63592 (3) 0.66901 (3) 0.02247 (12) 0.6143 (14)
Br2 0.58481 (5) 0.33875 (3) 0.64866 (3) 0.02405 (12) 0.8309 (9)
Br3 0.80683 (4) 0.53911 (3) 0.52227 (3) 0.02760 (12) 0.8878 (10)
Cl1 0.50914 (5) 0.63592 (3) 0.66901 (3) 0.02247 (12) 0.3858 (14)
Cl2 0.58481 (5) 0.33875 (3) 0.64866 (3) 0.02405 (12) 0.1122 (10)
Cl3 0.80683 (4) 0.53911 (3) 0.52227 (3) 0.02760 (12) 0.1691 (9)
N1 0.6521 (4) 0.8743 (2) 0.5886 (3) 0.0309 (7)
H1 0.598 (5) 0.812 (2) 0.593 (4) 0.061 (14)*
N2 0.9135 (3) 1.1561 (2) 0.5550 (2) 0.0231 (6)
C1 0.7281 (4) 0.9350 (3) 0.6844 (3) 0.0304 (8)
H1A 0.7212 0.9116 0.7590 0.036*
C2 0.8143 (4) 1.0288 (3) 0.6765 (3) 0.0259 (7)
H2 0.8683 1.0696 0.7457 0.031*
C3 0.8251 (4) 1.0670 (3) 0.5661 (3) 0.0190 (6)
C4 0.7363 (4) 1.0019 (3) 0.4663 (3) 0.0228 (7)
H4 0.7345 1.0249 0.3896 0.027*
C5 0.6553 (4) 0.9080 (3) 0.4810 (3) 0.0297 (8)
H5 0.5994 0.8645 0.4142 0.036*
C6 1.0103 (4) 1.2201 (3) 0.6573 (3) 0.0349 (8)
H6A 0.9356 1.2652 0.6883 0.052*
H6B 1.0876 1.2697 0.6340 0.052*
H6C 1.0725 1.1680 0.7182 0.052*
C7 0.9124 (4) 1.1989 (3) 0.4397 (3) 0.0293 (7)
H7A 0.9577 1.1418 0.3985 0.044*
H7B 0.9802 1.2670 0.4496 0.044*
H7C 0.7985 1.2166 0.3937 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01350 (14) 0.01560 (14) 0.01208 (14) −0.00189 (10) 0.00326 (11) −0.00020 (11)
Br1 0.0329 (2) 0.0187 (2) 0.0178 (2) −0.00322 (16) 0.01055 (17) −0.00423 (15)
Br2 0.0329 (2) 0.01902 (19) 0.01671 (19) −0.00065 (14) 0.00180 (15) 0.00479 (13)
Br3 0.01394 (18) 0.0409 (2) 0.0279 (2) −0.00705 (13) 0.00609 (14) −0.00114 (15)
Cl1 0.0329 (2) 0.0187 (2) 0.0178 (2) −0.00322 (16) 0.01055 (17) −0.00423 (15)
Cl2 0.0329 (2) 0.01902 (19) 0.01671 (19) −0.00065 (14) 0.00180 (15) 0.00479 (13)
Cl3 0.01394 (18) 0.0409 (2) 0.0279 (2) −0.00705 (13) 0.00609 (14) −0.00114 (15)
N1 0.0277 (16) 0.0246 (15) 0.0427 (19) 0.0002 (12) 0.0141 (14) 0.0088 (14)
N2 0.0235 (14) 0.0244 (14) 0.0195 (14) −0.0029 (11) 0.0032 (11) −0.0017 (11)
C1 0.0298 (19) 0.037 (2) 0.0273 (18) 0.0121 (15) 0.0138 (15) 0.0114 (16)
C2 0.0256 (17) 0.0335 (18) 0.0190 (17) 0.0045 (14) 0.0071 (14) 0.0010 (13)
C3 0.0157 (14) 0.0217 (15) 0.0185 (15) 0.0046 (11) 0.0036 (12) 0.0009 (12)
C4 0.0214 (15) 0.0252 (16) 0.0198 (16) −0.0003 (13) 0.0030 (13) −0.0026 (13)
C5 0.0238 (17) 0.0282 (18) 0.033 (2) −0.0001 (13) 0.0021 (15) −0.0037 (15)
C6 0.033 (2) 0.035 (2) 0.033 (2) −0.0101 (15) 0.0035 (16) −0.0085 (16)
C7 0.0300 (18) 0.0285 (18) 0.0270 (18) −0.0048 (14) 0.0045 (14) 0.0082 (14)

Geometric parameters (Å, °)

Sn1—Br1 2.5658 (4) C1—C2 1.351 (5)
Sn1—Cl1i 2.5658 (4) C1—H1A 0.9500
Sn1—Br1i 2.5658 (4) C2—C3 1.419 (4)
Sn1—Br2 2.5663 (3) C2—H2 0.9500
Sn1—Cl2i 2.5663 (3) C3—C4 1.433 (4)
Sn1—Br2i 2.5663 (3) C4—C5 1.349 (5)
Sn1—Cl3i 2.5709 (3) C4—H4 0.9500
Sn1—Br3i 2.5709 (3) C5—H5 0.9500
Sn1—Br3 2.5709 (3) C6—H6A 0.9800
N1—C1 1.343 (5) C6—H6B 0.9800
N1—C5 1.351 (5) C6—H6C 0.9800
N1—H1 0.882 (10) C7—H7A 0.9800
N2—C3 1.327 (4) C7—H7B 0.9800
N2—C6 1.466 (4) C7—H7C 0.9800
N2—C7 1.462 (4)
Br1—Sn1—Cl1i 180.0 Br3i—Sn1—Br3 180.000 (17)
Br1—Sn1—Br1i 180.0 C1—N1—C5 120.5 (3)
Cl1i—Sn1—Br1i 0.000 (14) C1—N1—H1 122 (3)
Br1—Sn1—Br2 89.576 (13) C5—N1—H1 118 (3)
Cl1i—Sn1—Br2 90.424 (13) C3—N2—C6 121.7 (3)
Br1i—Sn1—Br2 90.424 (13) C3—N2—C7 121.6 (3)
Br1—Sn1—Cl2i 90.424 (13) C6—N2—C7 116.6 (3)
Cl1i—Sn1—Cl2i 89.576 (12) N1—C1—C2 121.2 (3)
Br1i—Sn1—Cl2i 89.576 (12) N1—C1—H1A 119.4
Br2—Sn1—Cl2i 180.0 C2—C1—H1A 119.4
Br1—Sn1—Br2i 90.424 (13) C1—C2—C3 120.8 (3)
Cl1i—Sn1—Br2i 89.576 (12) C1—C2—H2 119.6
Br1i—Sn1—Br2i 89.576 (12) C3—C2—H2 119.6
Br2—Sn1—Br2i 180.0 N2—C3—C2 122.7 (3)
Cl2i—Sn1—Br2i 0.00 (2) N2—C3—C4 121.5 (3)
Br1—Sn1—Cl3i 89.529 (12) C2—C3—C4 115.7 (3)
Cl1i—Sn1—Cl3i 90.471 (12) C5—C4—C3 120.2 (3)
Br1i—Sn1—Cl3i 90.471 (12) C5—C4—H4 119.9
Br2—Sn1—Cl3i 90.248 (12) C3—C4—H4 119.9
Cl2i—Sn1—Cl3i 89.752 (12) C4—C5—N1 121.4 (3)
Br2i—Sn1—Cl3i 89.752 (12) C4—C5—H5 119.3
Br1—Sn1—Br3i 89.529 (12) N1—C5—H5 119.3
Cl1i—Sn1—Br3i 90.471 (12) N2—C6—H6A 109.5
Br1i—Sn1—Br3i 90.471 (12) N2—C6—H6B 109.5
Br2—Sn1—Br3i 90.248 (12) H6A—C6—H6B 109.5
Cl2i—Sn1—Br3i 89.752 (12) N2—C6—H6C 109.5
Br2i—Sn1—Br3i 89.752 (12) H6A—C6—H6C 109.5
Cl3i—Sn1—Br3i 0.00 (2) H6B—C6—H6C 109.5
Br1—Sn1—Br3 90.471 (12) N2—C7—H7A 109.5
Cl1i—Sn1—Br3 89.529 (12) N2—C7—H7B 109.5
Br1i—Sn1—Br3 89.529 (12) H7A—C7—H7B 109.5
Br2—Sn1—Br3 89.752 (12) N2—C7—H7C 109.5
Cl2i—Sn1—Br3 90.248 (12) H7A—C7—H7C 109.5
Br2i—Sn1—Br3 90.248 (12) H7B—C7—H7C 109.5
Cl3i—Sn1—Br3 180.000 (17)
C5—N1—C1—C2 −2.3 (5) C1—C2—C3—N2 −177.4 (3)
N1—C1—C2—C3 0.9 (5) C1—C2—C3—C4 1.5 (5)
C6—N2—C3—C2 1.6 (5) N2—C3—C4—C5 176.1 (3)
C7—N2—C3—C2 −175.2 (3) C2—C3—C4—C5 −2.8 (5)
C6—N2—C3—C4 −177.3 (3) C3—C4—C5—N1 1.6 (5)
C7—N2—C3—C4 5.9 (5) C1—N1—C5—C4 1.0 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br1 0.88 (1) 2.48 (2) 3.334 (3) 162 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2458).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jang, Y., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m645. [DOI] [PMC free article] [PubMed]
  4. Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m834. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019734/tk2458sup1.cif

e-65-0m715-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019734/tk2458Isup2.hkl

e-65-0m715-Isup2.hkl (128.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES